
Hardware Trojan Horse Device based on Unintended USB Channels

John Clark, Sylvain Leblanc and Scott Knight
Electrical and Computer Engineering Department

Royal Military College of Canada
Kingston, Ontario, Canada

{john.clark, sylvain.leblanc, knight-s}@rmc.ca

Abstract

This paper discusses research activities that investigated
the risk associated with USB devices. The research focused
on identifying, characterizing and modelling unintended
USB channels in contemporary computer systems. Such
unintended channels can be used by a USB Hardware Trojan
Horse device to create two way communications with a
targeted network endpoint, thus violating the integrity and
confidentiality of the data residing on the endpoint. The work
was validated through the design and implementation of a
proof of concept Hardware Trojan Horse device that uses
two such unintended USB channels to successfully interact
with a target network endpoint to compromise and exfiltrate
data from it.

1. Introduction

The USB protocol is ubiquitously on modern computer
systems such as servers and network endpoints1. USB pe-
ripherals offer network endpoints a wide variety of func-
tionality, from storage to Human Interface Devices. The
USB Specification defines a single physical interface and
base protocol to be used for all USB devices [1]. USB
devices are Plug and Play, meaning that a contemporary
computer system contains the driver software necessary to
configure a newly attached USB device without user or
system administrator intervention.

The very properties that make USB attractive to users
(dynamic attachment, automatic configuration and the use
of a single bus for a wide range of devices) can also turn
USB into a viable attack vector into a network endpoint.
Even when used as intended, USB can pose significant
risks to confidentiality, as is the case when using USB
storage devices to exfiltrate large amounts of data from
a network endpoint. However, USB can also affect the
integrity of information on the network endpoint. Attackers
have exploited Plug and Play, USB Flash Drives and other

1. We use the term network endpoint to refer to production workstations
attached to the corporate LAN. The USB specifications describe a similar
term device endpoint which refers to the source or sink of data on a USB
device.

usability features (such as AutoRun and AutoPlay) to inject
Software Trojan Horses in network endpoints [2], [3].

Endpoint Security Solutions have been introduced to
help protect contemporary computer systems from the risks
of such intended USB communication. Endpoint Security
Solutions work by extending an access control list to certain
classes of devices such as mass storage devices, imaging
devices, PDAs, printers and communication ports. The End-
point Security Solutions examined in this research did not
generally regulate Human Interface Devices such as mice,
keyboards and speakers [4], [5], [6], [7]. Our work demon-
strates that an attacker can make use of certain USB devices,
not controlled by Endpoint Security Solutions, to create a
Hardware Trojan Horse device. The Hardware Trojan Horse
device can be attached to a target network endpoint as a
replacement for the existing keyboard. Providing keyboard
functionality allows the Hardware Trojan Horse to keylog
user credentials as well as to upload and cause the execution
of arbitrary code. Such arbitrary code leaves the network
endpoint vulnerable to a wide range of known malicious
attacks. More importantly, the ability to execute arbitrary
code allows the Hardware Trojan Horse device to create
unintended USB channels in order to establish two-way
communications between itself and the network endpoint.

We hypothesize that the USB protocol carries the risk of
unintended USB channels. We further note that this risk has
not been well researched to date.

An unintended USB channel is one where the USB
protocol is used to communicate in a way not anticipated
by the USB protocol. As an example consider the commu-
nications between a USB keyboard and a network endpoint.
USB keyboards normally use two intended USB channels
to communicate with a network endpoint2. One channel
exists to transfer data in the form of key presses from the
keyboard to the network endpoint. The other channel exists
to communicate the state of certain modifiers (e.g. Caps
Lock, Number Lock and Scroll Lock) from the net-
work endpoint to attached USB keyboards. An application
on the network endpoint could create an unintended USB
channel by causing the transmission of LED Status messages

2. The USB Specification [1] and Axelson [8] provide a good description
of intended USB channels.

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 Crown Copyright

DOI 10.1109/NSS.2009.48

1

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 Crown Copyright

DOI 10.1109/NSS.2009.48

1

2009 Third International Conference on Network and System Security

978-0-7695-3838-9/09 $26.00 © 2009 Crown Copyright

DOI 10.1109/NSS.2009.48

1

in a sequence that has meaning to the attached keyboard
other than the toggling of the keyboard LEDs.

1.1. Related Work

The open literature does not discuss unintended USB
channels, but the following bear some relevance on our
research.

Because the USB protocol relies on devices to prop-
erly identify themselves during enumeration, a USB Meta-
Device could be programmed to identify itself as any USB
device [9]. In this way, the USB Meta-Device could be
configured to represent itself as a device associated with
a vulnerable driver loaded on the network endpoint. Our
approach differs from the USB Meta-Device in that it does
not require the presence of a vulnerable driver on the
network endpoint.

There are risks associated with the consented use of
USB [10] where legitimate users allow a foreign USB device
to connect to the network endpoint, either voluntarily or
because they have been duped [2]. In fact, Endpoint Security
Solutions have been developed to mitigate this risk. Our
approach differs in that it can still be used in the presence
of Endpoint Security Solutions, as those generally do not
regulate Human Interface Devices.

The idea of a Keyboard Jitterbug was introduced in
2006 [11]. Such a device can be inserted between a keyboard
and a network endpoint and act as a keylogger. This work is
interesting in that it demonstrates that a device that provides
keyboard functionality can also be used to exfiltrate data
from a network endpoint. However, it is different from
our approach because it requires that the network endpoint
maintain an interactive session through the Internet. Our
Hardware Trojan Horse device is able to exfiltrate infor-
mation from a network endpoint without having to rely on
the network.

Finally, while there is no known research into unintended
USB channels, there is extant covert channel research.
A covert channel can be defined as “an enforced, illicit
signalling channel that allows a user to surreptitiously con-
travene the security policy and unobservability requirements
of the system” [12]. As our unintended USB channels can
be used to exfiltrate data from the network endpoint, they
are similar to covert channels, even if we do not stress
their unobservability. We use throughput to characterize the
seriousness of the risk associated with unintended USB
channels, because it is a recognized characteristic of such
channels.

The remainder of this document is separated in three
main sections. Section 2 will discuss two unintended USB
channels, models of their throughput and the experiments
we conducted to verify those models. Section 3 will discuss
the validation of our research aim, carried out by developing
and implementing a proof of concept Hardware Trojan Horse

device. Finally Section 4 will conclude with a discussion of
other relevant factors that should be considered when ana-
lyzing the risks of unintended USB channels and potential
avenues for future work.

2. Two Unintended USB Channels

As we will discuss later, our work is based on the premise
that a Hardware Trojan Horse device must be capable of up-
loading applications to create the unintended USB channel.
Any USB device connected to a network endpoint presents
an interface defining certain connection parameters during
enumeration. In order to use unintended USB channels to
exfiltrate data from a network endpoint, a Hardware Trojan
Horse device would have to be successfully enumerated by
a network endpoint. This requires that the device interface
presented to the network endpoint be recognized as legiti-
mate by an Endpoint Security Solution.

In approaching this research, we first identified a number
of potential unintended USB channels based on devices that
are not well regulated by Endpoint Security Solutions. These
potential channels were classified into two categories: User-
Space and Kernel-Space channels. In User-Space channels,
the USB protocol is used as implemented to create unin-
tended USB channels; in Kernel-Space channels, the Kernel
is subverted in oder to modify the USB System Software
on a network endpoint to create unintended USB Channels.
Our research focused exclusively on User-Space unintended
USB channels.

Three types of transfers used by potential User-Space
channels were examined: Control, Interrupt and Isochronous
Transfers. These were examined to determine if they could
form the basis of an unintended USB channel. Bulk trans-
fers, the fourth type of USB transfer, were discounted as they
are associated with devices that would be well regulated by
Endpoint Security Solutions.

Control and Isochronous transfers were further examined
because devices associated with them are not currently
viewed as a risk for the exfiltration of data, and are not
considered in current risk mitigation strategies. As discussed,
a Hardware Trojan Horse must be able to enumerate in
the face of an Endpoint Security Solution. Keyboards are
considered essential peripheral device for a contemporary
computer system, and are generally not regulated by End-
point Security Solutions. We therefore identified a potential
unintended USB channel based on a USB keyboard using
Control Transfers. However, as USB keyboards are Low-
Speed devices, an unintended USB channel based on a key-
board would likely have limited throughput. To be effective,
a Hardware Trojan Horse device would need a channel
with higher throughput. This lead us to identify a second
potential unintended USB channel based on Isochronous
Transfers to a Full-Speed speaker. While speakers are not
considered essential peripheral devices, they are generally

222

only considered able to receive audio data, and they are
generally not regulated by Endpoint Security Solutions.

The examination of these two candidate channels entailed
initial experimentation to better understand the data trans-
fers. Following this, a mathematical model of the unintended
USB channel’s throughput was developed. The Throughput
Model for each unintended USB channel was then verified
through experimentation.

In order to perform the verification, a USB keyboard
interface and a USB speaker interface were developed us-
ing PLX’s Net2280 Resource Development Kit [13]. The
Net2280 is a PCI card that can be made to appear as
one of a number of USB devices. The keyboard interface
was designed to provide keyboard functionality and key-
log a user’s credentials. Both interfaces were designed to
decode data transmitted on the applicable unintended USB
channel and record the elapsed time between transfers to
compute throughput. The target network endpoint used for
the verification and validation was a contemporary computer
system running the Windows XP Professional Service Pack
2 operating system.

2.1. Keyboard LED Channel

USB keyboards are Low-Speed Human Interface Devices
that use two intended USB channels to communicate with a
network endpoint: one based on Interrupt Transfers and one
based on Control Transfers. The Interrupt Transfer endpoint
is unidirectional, with data flowing into the network end-
point, whereas the Control Transfer endpoint is bidirectional,
making it a good candidate for the exfiltration of data from a
network endpoint to a device identifying as a USB keyboard.

The USB Specification [1] and the USB Device Class
Definition for Human Interface Devices [14] describe the
format of data packets used for Control Transfers between
a network endpoint and a USB keyboard. In particular,
a Keyboard Output Report is described, which allows the
manipulation of 3 bits mapped to the state of Caps Lock,
Scroll Lock or Num Lock modifiers.

A Keyboard Output Report is generated by a network
endpoint every time a keyboard transmits that a modifier key
such as the Caps Lock, Scroll Lock or Num Lock
key has been pressed. The network endpoint toggles the
appropriate bit(s) in the Keyboard Output Report to represent
the change, and transmits the report to all attached key-
boards. Upon receipt of the report, attached USB keyboards
toggle the physical LEDs corresponding to the changed
modifier keys. Normally a Keyboard Output Report is only
generated when there is a change in state of the modifier
keys.

2.1.1. Initial Experimentation. The USB Specification in-
dicates that a device has 5 seconds to handle a Control
Transfer with a Data Stage [1]. This upper bound response

time is not sufficient to allow us to precisely compute
the throughput for the Keyboard LED Channel. Therefore,
a series of experiments were designed and conducted to
determine a representative response time for a device to
handle Control Transfers with a Data Stage.

We created a VBScript file containing key press informa-
tion to generate Keyboard Output Reports while imposing a
delay between report generation. The imposed delay varied
between 25 msec and 150 msec for each trial. The VBScript
was executed on a target network endpoint and Keyboard
Output Reports were observed using HHD’s USB Monitor
Professional [15]. The results of these initial experiments
allowed us to determine that a delay of 109.5 msec between
the generation of Keyboard Output Reports allowed for
successful reception by the USB keyboard interface. When
the delay was less than 109.5 msec, some of the Keyboard
Output Reports were not received by the USB interface, a
situation we called deletion error. The frequency of deletion
errors increased as the delay between Keyboard Output
Reports was shortened.

We also observed another condition where Keyboard Out-
put Reports that were not generated by the network endpoint
were observed at the USB keyboard interface; a situation
we called insertion error. Insertion errors were infrequent
during initial experimentation. Three inserted symbols were
observed for 77 360 symbols transmitted, yielding a symbol
insertion rate of 0.0039%. The elapsed time between the
transmission of a legitimate symbol and an inserted symbol
was observed to be significantly shorter than the elapsed
time between successive legitimate symbols of 109.5 msec.
Of the three insertion errors, two had elapsed times of 16
msec and one had an elapsed time of 31 msec.

This characteristic of insertion errors allowed us to locate
them easily; it also allowed us to manually reconstruct the
intended symbol by removing the inserted symbol from
the communication stream. The inserted symbols occurred
so infrequently that their effect on the Keyboard LED
Throughput Model was ignored.

Being able to transmit three bits of information every
109.5 msec, yields a Theoretical Throughput for the Key-
board LED Channel of 3.42 bytes/sec.

2.1.2. Keyboard LED Channel Throughput Model. We
selected a coding scheme in order to model the throughput
of the Keyboard LED Channel. We chose a simple state
based coding scheme, as shown in Figure 1. Our application
generates Keyboard Output Reports representing fictitious
changes to the state of the modifier keys to exfiltrate data,
and not in response to user action as is normally the case.
Because three bits of the report can be manipulated, our
code allows for seven possible symbols to exfiltrate a 7 bit
ASCII characters (the eight possible symbol corresponding
to no change in state of the modifier keys is never generated).
From Figure 1 we see that the state machine starts at

333

Figure 1. Keyboard LED Channel Coding Scheme

an arbitrary state for the modifier keys, XYZ: where X
represents the current state of the Scroll Lock modifier,
Y the current state of the Caps Lock modifier and Z the
current state of the Num Lock modifier. A symbol can
be generated by creating a Keyboard Output Report where
one or more of the three available bits are toggled. Of the
seven possible symbols, four carry two bits of information,
two symbols carry one bit of information and are padded
with a most significant bit of 0. These padded symbols are
used to mark the Start of a Character (SOC). The seventh
symbol, corresponding to toggling all three modifiers at
once was used as a framing character (Start/End of Frame
- SOF/EOF). For the purposes of this work, the start and
end of a message was indicated by toggling the SOF/EOF
symbol twice, resulting in an overhead of 1 byte for a
message of any arbitrary size. In order to exfiltrate an ASCII
message using the Keyboard LED Channel, each ASCII
character requires four symbols. For example, in order to
exfiltrate the ASCII character “S” (0101 0011 in binary),
four symbols would be required: a “SOC 01”, a “01”, a “00”
and a “11” symbol. Assuming a start state where only the
Num Lock modifier is on (XYZ = 001), Keyboard Output
Reports would be generated to toggle the Scroll Lock
and Caps Lock (symbol 1), the Caps Lock (symbol 2),
the Num Lock (symbol 3) and the Scroll Lock (symbol
4).

For a message of M bytes, the Keyboard LED Channel
Throughput Model is then:

Keyboard LED Channel (1)

Throughput [bytes/sec] =
M

4 ∗ (M + 1) ∗ 0.1095

Because of the imposition of overhead by the framing
characters in our chosen coding scheme, the Keyboard LED
Channel can never match the Theoretical Throughput. The
Throughput Model is a limiting function of the message
size and reaches a maximum achievable throughput of 2.283
bytes/sec.

2.1.3. Keyboard LED Channel Verification. An applica-
tion, known as the Keyboard LED Coding Application, was
designed and implemented in C++ that parsed a text file
and generated a VBScript containing associated symbols

(key press events to toggle modifier keys). The generated
VBScript imposed a delay between successive symbols of
109.5 msec. The Keyboard LED coding application was
placed on a target network endpoint, along with a 161 byte
text file.

For this file size, the Keyboard LED Channel Throughput
Model predicted a throughput of 2.269 bytes/sec. 20 exfil-
trations were performed resulting in an average observed
throughput of 2.274 bytes/sec. The observed throughput
deviated from the modelled throughout by 0.22%. No in-
serted symbols were observed during the verification of
the Keyboard LED Channel throughput model. Based on
these results, we considered the Keyboard LED Channel
Throughput Model to be verified as accurate. Note that the
same experiment was used to validate our research aim in
Section 3.3.

2.2. Audio Channel

USB speakers are Full-Speed Audio devices that have two
device endpoints: a Control Transfer endpoint (similar to that
described for a USB keyboard), and an Isochronous endpoint
to receive a stream of data from a network endpoint. The
Isochronous Endpoint is unidirectional, with data flowing
out from the network endpoint.

The USB Specification describes the maximum
Isochronous Transfer data packet size for a Full-Speed
devices as 1023 bytes. It also specifies that a Full-Speed
device, using Isochronous Transfers to communicate,
can receive a data packet every frame, or every 1 msec.
An unintended USB channel based on the Isochronous
Transfers of 1023 bytes every 1 msec yields a Theoretical
Throughput of 1023 kilobytes/sec.

The USB Device Class Definition for Audio Devices
2.0 [16] generally describes how a network endpoint mar-
shals data to be sent to an audio device into structured
blocks. The size of the block, BSize, is a product of the
audio file’s coded sample resolution, in bytes/sample, and
of the number of channels.

BSize = Number of Channels ∗ Sample Resolution (2)

The WAVEFORMATEXTESNIBLE [17] audio format was
chosen for this work, allowing for sample resolutions
of 3 bytes/sample and four channels. This provided
a BlockSize of 12 bytes. The number of blocks
(NumBlocks) that are inserted into one Isochronous Trans-
fer data packet also depends on the Sample Rate of the audio
file. The WAVEFORMATEXTESNIBLE audio format allowed
for a Sample Rate of 85 000 samples/sec for each channel,
or 85 blocks of BSize per data packet transmitted every 1
msec.

Thus, using the characteristics for an audio file described

444

above, we obtained a data packet size of:

Audio Data Packet = 85 ∗ 12 (3)
= 1020 bytes/packet

2.2.1. Initial Experimentation. A C++ application,
known as the Audio Coding Application, was designed
and implemented to create an appropriately formatted
WAVEFORMATEXTESNIBLE audio file from a text file.
The entire text file is directly transposed in the audio file’s
Data SubChunk.

For this work, with the Sample Rate set to 85 000 blocks
per second (or 85 blocks per Isochronous Transfer data
packet), and a BSize of 12 bytes/block, we can consider
messages exfiltrated via the Audio Channel in terms of
blocks. The number of blocks (NumBlocks) required for a
message of M bytes is:

NumBlocks [blocks] =
M

BlockSize
(4)

Based on our chosen actual data packet transmitted size
and the Full-Speed speaker’s periodicity, the maximum
achievable throughput is 1020 kilobytes/sec.

A series of initial experiments were designed and con-
ducted to examine the representation of the data that was
transmitted over the Audio Channel. The generated audio
file was played to an attached speaker device using the
Playsound() API, and the data transmitted was observed
using HHD’s USB Monitor Professional. Two observations
were made following these experiments: there was more data
transmitted than was expected and there was some variability
in the data transmitted.

The additional data observed was digital silence (0x00 or
0xFF) appended to the end of the data stream representing
the encoded audio file. The size of the additional data was
between 30 and 40 full packets. The variability in the amount
of additional data, termed End Stuffing, was determined to be
due to the network endpoint’s operating system’s buffering
policy for audio data used to prevent device starvation [18].
An expression was developed to express End-Stuffing in
terms of packets:

End Stuffing [packets] = (5)

30 + 10 ∗
(⌈

NumBlocks

850

⌉
−

NumBlocks

850

)
The data encoded in the audio file was occasionally modified
in transmission, where characters received were - 0x01 of
the encoded hexadecimal value in the audio file’s Data
SubChunk. We observed that this variability occurred in-
frequently, but we made no attempts to analyze its source,
or its frequency of occurrence.

Because of the end stuffing of digital silence and the
variability in the data transmitted, we chose a coding scheme
that saw upper case ASCII letters, numbers and punctuation
(69 possible characters) mapped to three symbols each in the

Figure 2. Hardware Trojan Horse Device

range of 0x00 to 0xFF. Data variability and digital silence
made it impossible to represent lower case letters using 256
symbols.

2.2.2. Mathematical Model of Theoretical Throughput.
Taking End Stuffing in consideration, we developed the
following expression for the transmit time (TxTime) of a
message using the Audio Channel:

TxT ime [sec] = (6)

0.001 ∗
(

NumBlocks

BlocksPerPacket
+ End Stuffing

)
The Audio Channel Throughput Model is then given by

the message size M divided by the time required to transmit
it, including end-stuffing:

Audio Channel (7)

Throughput [bytes/sec] =
M

TxTime

2.2.3. Audio Channel Verification. The audio coding appli-
cation was placed on a target network endpoint along with a
40 800 byte text file. For a file of this size, requiring 100 full
Isochronous data packets, the Audio Channel Throughout
Model predicted a throughput of 784 615.3 bytes/sec. 20
exfiltrations were performed resulting in an average observed
throughput of 784 695.2 bytes/sec. The observed throughput
deviated from the model throughput by 0.01%. Based on
these results, we considered the Audio Channel throughput
model verified as accurate.

3. Validation

We designed and implemented a proof of concept USB
Hardware Trojan Horse device, based on the Net2280 Re-
source Development Kit, to validate our hypothesis that
unintended USB channels represent a risk to contemporary
computer systems. A Hardware Trojan Horse device is
similar to a software Trojan Horse, in that it can provide
malicious functionality in addition to its apparent legitimate
and intended use. However, Hardware Trojan Horse devices
are different because they have their own processor and
do not have to rely on the targeted network endpoint for
processing.

A representation of the USB endpoints and interfaces of
the proof of concept Hardware Trojan Horse device we

555

envisioned is given at Figure 2. The Proof of Concept
Hardware Trojan Horse device presents two USB inter-
faces: a keyboard and a speaker, and it implements the
unintended Keyboard LED channel (using the Control
Out endpoint) and the unintended Audio Channel (using the
Isochronous Out endpoint). We envisioned a Hardware
Trojan Horse employed in the following scenario.

3.1. Representative Scenario

A network endpoint’s keyboard is replaced by a Hardware
Trojan Horse. The Hardware Trojan Horse functions as a
keyboard, but it also logs the authorized user’s authentication
credentials. The Hardware Trojan Horse activates outside the
organization’s business hours and logs in to the network end-
point. It then uploads the applications necessary to create the
Keyboard LED and Audio Channels between the network
endpoint and the Hardware Trojan Horse, and applications
that can open a tunnel and a back door to the Internet.
The Hardware Trojan Horse then carries out its attack. It
performs a search of the network endpoint’s data, looking for
files containing uploaded keywords and directing the results
of the search to a text file. These search results, consisting
of the path to files containing keywords, is exfiltrated to the
Hardware Trojan Horse using the Keyboard LED Channel.
The search result is analyzed by the Hardware Trojan Horse,
which then causes the exfiltration of the files of interest from
the network endpoint to the Hardware Trojan Horse using
the Audio Channel. The exfiltrated files are further analyzed
by the Hardware Trojan Horse, and one is chosen to be
sent through the open Internet tunnel. Finally, the Hardware
Trojan Horse opens a back door to the network endpoint
and suspends the attack by returning the network endpoint
to the state in which the authorized user had left it.

Two experiments were conducted in order to validate
our research hypothesis. The first experiment, termed the
Upload Experiment, observed the time necessary for the
Hardware Trojan Horse to upload required applications. The
second Attack Experiment observed the correct functioning
of the Hardware Trojan Horse as it used both unintended
USB channels to exfiltrate data from a network endpoint,
processed the data and exercised its tunnelling and back door
capabilities.

3.2. Upload Experiment

Four files were uploaded to a target network network
endpoint, using the Hardware Trojan Horse’s keyboard func-
tionality: 1) the Keyboard LED Channel Coding Application
which encodes the contents of a text file into a VBScript
that generates Keyboard Output Reports; 2) the Audio Cod-
ing Application which encodes the contents of a text file into
the Data SubChunk of a WAVEFORMATEXTENSIBLE
audio file; 3) the PlaySound() application that plays an

audio file to attached USB speakers; and 4) the tunnel tool
that allows a target file to be tunnelled out from the network
endpoint to the Internet, and allows a back door into the
network endpoint. The size of the four files was over 193.8
KB.

The first three files were required to create the unintended
USB channels from the target network endpoint to the
Hardware Trojan Horse. The fourth file, a tunnel tool, was
also included to demonstrate the ability of the Hardware
Trojan Horse to cause the execution of more malicious code
on the target network endpoint.

An available tool, EXE2VBS [19], was used to convert
the four files from executables into a text representation,
suitable for the keyboard interface to transmit one character
at a time into a newly opened text document. The text
representations contained the executable in hexadecimal
representation wrapped in a VBScripts structure. When
the VBScript was executed, the executable was unpacked
and available for use.

The Upload Experiment measured the time required to
upload and compile the files. It should be noted that the time
to upload the files had much more impact on the total time,
being at least two orders of magnitude greater that the time
required to compile the files into executables. We conducted
10 trials of this experiment, and obtained an average time
of 3197.46 sec with a standard deviation of s = 0.95 sec.

3.3. Attack Experiment

The Attack Experiment allowed us to compare the
throughputs of both unintended USB channels with the
values predicted by our mathematical models, and to confirm
the Hardware Trojan Horse Device’s processing capability.
For 20 trials, the Hardware Trojan Horse exfiltrated a 161
byte file using the Keyboard LED Channel and processed
that file to cause the exfiltration of two files totalling
877 bytes using the Audio Channel. The Hardware Trojan
Horse successfully processed the file exfiltrated using the
Keyboard LED Channel in all instances, properly causing
the exfiltration of the correct files using the Audio Channel
and opening up the tunnel and back door.

For the Keyboard LED Channel Throughput, the math-
ematical model from Section 2.1.2 predicted that the file
transfer would take 70.956 sec, resulting in a throughput of
2.269 bytes/sec. The average exfiltration time was 70.802140
sec (s=0.042964 sec) with a throughput of 2.274 sec. This
represents a difference between the predicted and the ob-
served throughput of 0.22%.

In the case of the Audio Channel Throughput, the math-
ematical model from Section 2.2.2 predicted that the files
would be transfered in 0.130000 sec, with a throughput of
784.615 kilobytes/sec. Over the course of the 20 trials, the
average exfiltration time was 0.129987 sec (s=0.000002 sec)
corresponding to a throughput of 784.695 bytes/sec. For this

666

channel, the difference between the observed and predicted
throughput is even smaller at 0.01%.

3.4. Discussion

The results of the Upload Experiment confirmed that it
is possible to steal a user’s credentials and use them to
upload arbitrary code using the keyboard functionality of
the Hardware Trojan Horse. The time required to complete
the upload of our chosen applications was approximately 57
minutes. While this is slow, we believe that it represents a
significant risk because it highlights an avenue of attack that
has not been well researched.

The results of the Attack Experiment indicate that the
Hardware Trojan Horse can: 1) use the unintended USB
channels to exfiltrate data from a network endpoint; 2)
process the exfiltrated data and analyze it to decide on
further action; and 3) use a tunnel and a back door to further
compromise the network endpoint. The throughput of these
unintended channels is non-negligible. The Audio Channel
is particularly dangerous with a throughput in the hundreds
of kilobytes/sec.

The Keyboard LED Channel’s observed throughput of
2.274 bytes/sec is 66.40% of the 3.42 bytes/sec Theoretical
Throughput discussed in Section 2.1.1. The difference is due
to the rudementary coding scheme we chose for the channel.
The implemented channel uses two bits of a possible 3-bit
information field and has a one byte overhead introduced by
framing symbols. We suspect that a more efficient coding
scheme could be used to improve the throughput of the
Keyboard LED Channel. The Audio Channel’s observed
throughput of 784.695 kilobytes/sec is 76.71% of the 1023
kilobytes/sec Theoretical Throughput. This difference is due
to the use of 1020 byte data packets rather than 1023 byte
data packets and the effect of the observed end-stuffng.

The Hardware Trojan Horse’s integral processing capabil-
ity makes it very resilient. Even if the network endpoint is
sanitized by reinstalling all its software, it remains vulner-
able. The Hardware Trojan Horse will remain able to steal
the legitimate user’s credentials, upload and execute arbitrary
code for as long as it is connected to the network endpoint.

3.4.1. Observability. Someone with direct observation of
the network endpoint would be able to notice the uploading
of applications, as the text entered by the Hardware Trojan
Horse device would appear on the display as text being
entered by the keyboard. A user at the network endpoint
could also disrupt the uploading of the applications because
any characters entered on the legitimate keyboard would be
passed to the file containing the uploaded application.

Since the Keyboard LED Channel changes the state of the
network endpoint’s Human Interface Device, its use could
also be noticed by someone using the network endpoint.
Such users would notice something if they were using an

attached keyboard to input text, because the capitalization
and use of the number pad would be affected. The use
of the Audio Channel could also be detected by a direct
observer, should they be using the network endpoint’s at-
tached speakers. The use of the Audio Channel results in a
short disruption in the playback to the speakers, and this is
noticeable.

The possible observation of the Hardware Trojan Horse
device leads us to determine that its application uploading
and attack phases should occur outside of the organiza-
tion’s regular business hours. This would greatly reduce the
probability that the Hardware Trojan Horse device would
be discovered. The activity of the Hardware Trojan Horse
would still be recorded by the network endpoint through logs
of user activity, but as this avenue of attack has not yet been
well explored, we doubt that many organizational policies
would look for such activity. Therefore, even if the Hardware
Trojan Horse device activity was detected, it would likely
be attributed to a human sitting at the network endpoint.

4. Conclusion

The research community does not yet fully understand
the risk associated with USB devices. The work presented
here investigated a portion of this risk, specifically the risk
associated with unintended USB channels. We have proved
our hypothesis that the USB protocol carries the risk of
unintended USB channels.

The work is important in highlighting deficiencies of cur-
rent USB device risk mitigation strategies that rely on device
self-identification such as Endpoint Security Solutions. A
Hardware Trojan Horse device can circumvent such risk
mitigation strategies because it represents itself as Human
Interface Devices, which are poorly regulated by Endpoint
Security Solutions.

The attention that we bring to Hardware Trojan Horse
devices is in itself an important contribution of our work.
Because such devices have their own processing capabilities,
they will not be easily detected by current security policies
and practices. It is also possible to envision many different
scenarios where a Hardware Trojan Horse device could be
used. Physical access can now be potentially sufficient to
compromise a network endpoint, without attempting access
through the network.

4.1. Future Work

Our work only begins the investigation into the risks
associated with unintended USB channels and Hardware
Trojan Horse Devices. The following areas deserve more
attention.

4.1.1. Investigation of other channels. As demonstrated by
the validation of the Keyboard LED and Audio Channels’

777

Throughput Models, the achievable throughput is less than
the Theoretical Throughput. The investigation into the risk of
USB devices using unintended USB channels would benefit
from determining achievable throughputs for other identified
unintended channels. In this way, defenders could more
accurately assess the risk associated with USB devices.

We have concentrated on throughput for the characteriza-
tion of unintended USB channels, and we have briefly dis-
cussed the observability as another characteristic of interest.
We feel that other characteristics should also be examined.
Recent research has demonstrated a link between covertness
and throughput of a channel [20]. Should defenders begin
to monitor for unintended USB channels, the two channels
used in this work could potentially sacrifice achievable
throughput in order to become more covert. Many extant
lines of research regarding the detection and mitigation
of covert channels could be leveraged to develop covert
USB channels. Reliability can be increased through the
introduction of error correction codes. Such codes would
address the deficiency of the Keyboard LED Channel’s
observed insertion error. Reliable covert USB channels can
pose a serious risk to the community.

4.1.2. Physical Implementation. The Proof of Concept
Hardware Trojan Horse device developed for this research is
not an actual attack tool. The investigation into USB device
risk would benefit from actual implementation of a Hardware
Trojan Horse device mascarading as a Human Interface
Device such as a keyboard. Moreover, actual implementation
of a workable Hardware Trojan Horse device would allow
for the determination of other important channel attributes,
such as the effort required to design and implement.

USB devices are ubiquitous and they present a risk to
the security of contemporary computer systems. The results
of this work contribute to the research community’s under-
standing of USB risk by discussing unintended USB chan-
nels and Hardware Trojan Horse devices. This work clearly
demonstrates that the risk of USB devices using unintended
USB channels is significant. The research community must
now take action to find effective mitigation strategies.

Acknowledgment

This research was funded in part by the ISSNet, a NSERC
Strategic Network (http://www.issnet.ca/).

References

[1] USB Implementers Forum, “USB 2.0 Specification,” 2001,
http://www.usb.org/developers/docs.

[2] S. Stasiukonis, “Social engineering, the USB way,” 2006, http:
//www.darkreading.com/document.asp?doc\id=95556.

[3] ——, “Social-engineering employees,” 2007, http://www.
darkreading.com/document.asp?doc\id=140433.

[4] CentenialSoftware, “Devicewall home page,” 2009, http://
www.devicewall.com.

[5] CheckPointSoftware, “Pointsec protector homepage,” 2009,
http://www.checkpoint.com/products/datasecurity/protector.

[6] J. Clark, “An examination of endpoint security methods to
regulate USB flash drives use,” Royal Military College of
Canada, M.A.Sc. Depth Research Paper, Oct. 2007.

[7] DeviceLockInc., “Devicelock homepage,” 2009, http://www.
devicelock.com.

[8] J. Axelson, USB Complete, 3rd ed. Madison WI, USA:
Lakeview Research LLC, 2005.

[9] D. Barral and D. Dewey, ““Plug and Root”, the USB Key to
the Kingdom,” 2005, http://www.blackhat.com/presentations/
bh-usa-05/BH\US\05-Barrall-Dewey.pdf.

[10] M. Al-Zarouni, “The reality of risks from consented use of
USB devices,” in Proceedings of the 4th Australian Informa-
tion Security Conference, Sep. 2006, pp. 5–15.

[11] G. Shah, A. Molina, and M. Blaze, “Keyboards and covert
channels,” in Proceedings of the 15th conference on USENIX
Security Symposium, 2006.

[12] Common Criteria Recognition Agreement, “Common criteria
for information technology security evaluation, version 2.3,”
2005, http://www.commoncriteriaportal.org/thecc.html.

[13] PLX Technology, “Net2280 home page,” 2008,
http://www.plxtech.com/products/net2000/net2280.asp.

[14] USB Implementers Forum, “Device Class Definition for Hu-
man Interface Devices,” 2001, http://www.usb.org/developers/
docs.

[15] HHDSoftware, “USB Monitor Profession Homepage,”
2009, http://www.hhdsoftware.com/Products/home/
usb-monitor-pro.html.

[16] USB Implementers Forum, “USB Device Class Definition
for Audio Devices 2.0,” 2006, http://www.usb.org/developers/
devclass\docs/Audio2.0\final.zip.

[17] Microsoft, “Windows Media: WAVEFORMATEXTEN-
SIBLE,” 2008, http://msdn.microsoft.com/en-us/library/
aa391547(VS.85).aspx.

[18] ——, “Windows Driver Kit: Audio Devices WaveCyclic
Latency,” 2009, http://msdn.microsoft.com/en-
us/library/ms790342.aspx.

[19] Tarako, “EXE2VBS,” 2003, http://www.haxorcitos.com/
ficheros.html.

[20] R. Smith and G. Scott Knight, “Predictable design of network-
based covert communication systems,” in Security and Pri-
vacy, 2008. SP 2008. IEEE Symposium on, May 2008, pp.
311–321.

888

