
Abstract

Security of network applications has become 
increasingly important in the past several years.  
Syntax-based testing is a black box, data driven 
testing technique, for applications for which input 
can be described formally. SCL is a component of 
Protocol Tester, a project at RMC and Queen's, 
that uses syntax-based testing to evaluate the se-
curity of network applications.  As a language, 
SCL can describe the syntax and the semantic 
constraints of a given protocol, constraints that 
pertain to the testing of network application secu-
rity. This paper describes how SCL captures the 
input syntax of a network application including 
both syntax and semantic constraints. Standard re-
verse engineering and program comprehension 
techniques are used to extract a detailed model 
from the description. This model can be used to 
automate the selection and generation of test cases 
in Protocol Tester.1 

1. Introduction

The security of network applications is an in-
creasingly important topic in both academia and 
industry.  The cheap availability of bandwidth 
world wide has increased the ability of people to 
communicate, but has also provided convenient 
access to many systems for those with malicious 
intent.  This increased access to bandwidth is not 
just access to the internet, but other networks 
such as the cellular phone networks (both voice 
and data). Additionally, implementations formerly 
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restricted to executing on closed network protocols 
are moving to public protocols such as the move 
of telephone networks from packet switched net-
works to Voice over IP protocols.

Some recent incidents include vulnerabilities in 
libraries used to display images (BMP[17] and 
JPG[15]), a vulnerability in Cisco routers running 
OSPF[3,16], and a proof of concept suggesting 
computer viruses can propagate on cellular 
phones[1].

Conformance testing of these applications 
tends to focus on the correct implementation of 
the application to valid requests and obvious er-
rors. However, in some cases, certain security vul-
nerabilities involve a data item that could not pos-
sibly occur in the normal operation of a protocol. 
For instance, at different occasions during the 
course of a TCP connection, state information is 
exchanged using the control flags located in packet 
headers.

One of the tactics developed by intruders in the 
mid-1980’s was to enable every single control 
flags in the same packet, called the Xmas tree 
packet. The packet was sent to the target 
matchine, effectively sending functionally mean-
ingless data to a TCP stack. Vulnerable stacks 
would then fail, compromising the machine. This 
became an effective Denial of Service attack.

TCP/IP and a number of other network appli-
cations exchange units of information using pro-
tocol  data units (PDU), units composed of one or 
more fields; in turn consisting of a contiguous 
stream of bits or bytes. A PDU may be a single 
packet, or it may be spread over multiple packets. 
The order and arrangement of fields within PDUs 
corresponds to a specific syntax [2]. Syntax-based 
testing of network applications [10,19,21] use that 
syntax.
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Using their own generation engines, both re-
search of PROTOS [10] and Protocol Tester [19] 
gave results that demonstrated the feasibility of 
generating a large number of malformed PDUs 
based on the specification of a relatively small set 
of modifications commands by the human analyst.

In a previous research [18], Protocol Tester 
technique was used to make the technique of ex-
ploiting sophisticated constraints more efficient, 
the intervention of the analyst, to write new 
constraint-exploiting scripts needs to be reduced. 

The Structure and Context-Sensitive language 
(SCL) was created to capture interesting 
application-level constraints on the syntax of 
PDUs by adding extensions to a subset of ASN.1. 
The goal of these extensions is to capture the 
application-level constraints on individual PDU 
fields and constraints between the value of one 
field and the syntax of another field, such con-
straints are called context-sensitive. This allows 
the analyst to work with SCL at a higher level of 
abstraction, much closer to the actual protocol 
specification. This paper discusses SCL, how it 
captures constraints and how it was validated.

2. Background

Syntax-based testing as defined by Beizer, [2] 
is a black box technique used to test the robust-
ness of implementations that take structured data 
as input (text or binary). He identifies several mu-
tation strategies to be applied to the input, or in 
the case of security vulnerability testing, to 
PDUs:

Syntax errors which consist of violations in 
the construction of more complex structures by 
adding, removing or altering the order of PDU 

fields.
Delimiter errors which alter the characters that 

appear as separators between fields. This includes 
changing the size of fixed length fields.

Value Errors which include using values that 
may be acceptable according to the input grammar, 
but are incompatible with the implementation or 
with other values in the data. An example is ver-
sion fields which are sometimes used to identify 
the version of the protocol. Typically only a lim-
ited number of values are valid in the version field.

Recursion. Loops and recursions are checked 
with single and multiple iterations. One measure 
of the robustness of an application is how it deals 
with structures that exceed iteration and recursion 
limits of the application.

 The PROTOS project[10,11] at Oulu Univer-
sity uses syntax testing to test the security of pro-
tocol implementations. They use higher order at-
tribute grammars and a walker to generate the vari-
ant PDUs. The grammar specifies the possible 
PDUs down to the values of the terminal fields.  
The grammar is modified using a scripting lan-
guage that allows the tester to modify values of 
terminals, add alternative values, and add alterna-
tive productions to the grammars. 

The higher order attribute actions are written in 
Java and are triggered as the walker visits nodes in 
the grammar tree. Some of the actions include cal-
culating checksums, sending and receiving pack-
ets.

While the general goal is the same, our ap-
proach is different. We capture a valid set of data 
by sniffing the network and transform it to gener-
ate mutant packets. The first version of Protocol 
Tester also uses a scripting language to drive the 
testing process.
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Figure 1. Protocol Tester General Structure



Figure 1 shows the overall structure of Proto-
col Tester [18,19,20].  At the bottom of the figure 
we have a network containing the test system and 
a client system that is interacting with the test 
system.  A sniffer is used to capture a valid PDU 
that was sent from the client to the test system.  
The PDU at this point in time is a binary data 
file.  This file is decoded into a textual representa-
tion by a decoder.

The markup and execution engine, imple-
mented in TXL[4], are used to generate variants of 
the packet which are then re-encoded and injected 
into the network. The original, valid packet is in-
jected between each of the mutated packets to ver-
ify that the test system is still functional and re-
sponsive.

The markup and execution approach is modeled 
on previous software evolution and transformation 
research [5]. This approach separates the planning 
of the testing suite from the execution of the test-
ing suite.  The markup that is generated is rather 
simple. It includes markup to delete a field, 
change the encoding of a field, duplicate a field, 
change the value of a field, and other similar 
tasks. The execution engine carries out most of 
the markup (encoding markup is carried out by the 
encoder). 

Thus markup is always done on the original 
valid packet, while execution generates the modi-
fied packets. The markup phase may generate 
more than one marked up packet, each of which is 
independent.  This separation of concerns is im-
portant.  Testing strategies that depend on simul-
taneous changes to multiple fields communicate 
through the markup. That is, they simultaneously 
make markup to multiple fields. The execution 
engine, responsible for implementing the trans-
forms, need not know about relationship between 
fields.

Protocol Tester has been used to independently 
verify known vulnerabilities in Trivial FTP 
(TFTP) and Simple Network Management 
(SNMP) implementations and has been used to 
test X.509, OSPF and BGP implementations. In 
both the X.509 and OSPF tests, new vulnerabili-
ties were discovered by Protocol Tester [18,19].

One deficiency in both PROTOS and Protocol 
tester is that the test planning must be done 
manually.  In both cases a scripting language is 
used to identify particular fields of the PDU for 
mutation, either by name, by pattern or by type. 

As an example, Figure 2 shows the textual 
form of a PDU exchanged between clients of a fic-
titious phone book applications. In the figure, 
each field value is preceeded with a label name and 
a keyword giving the type. All fields are included 
in a composite SEQUENCE field where the order 
of fields represent their application syntax. The 
first field of phoneBook PDU contains an integer 
number, the second field, phoneNumbers, contains 
two other integer fields each representing a phone 
number. 

While the syntax of phoneBook states the type 
and placement of every PDU field, other more so-
phisticated constraints are not shown and need to 
be described in prose. The value of number-
OfPhoneNumber gives the cardinality, or number 
of elements in the phoneNumbers field. The phone 
book application also requires that no more than 
20 phone numbers may be sent in the same 
phoneBook PDU. A last application constraint re-
quires phoneNumbers to be sorted in an ascending 
numeric order. Consequently, 5551212 must al-
ways be placed before the other phone number,  
5551313.

In the previous version of Protocol Tester, the 
human analyst provides a script with commands to 
swap the elements of the phoneNumbers field or 
change the values of the numberOfPhoneNumber 
field as well as other possible changes. The ana-
lyst is not making the changes at random. Each 
command in the script is targeting an application 
constraint. The are derived from the semantic in-
formation describe of the protocol specification. 
Changing the order of the fields of phoneNumbers 
breaks the order constraint. Changing the value of 
the numberOfPhoneNumber field breaks the con-
straint between the value field and the number of 
elements of the phoneNumbers fields. 

This shows the need for some notation or pro-
tocol description language which captures the con-
straints applied to PDU field values as a conse-
quence of the application semantics. The notation 

phoneBook SEQUENCE{
  numberOfPhoneNumber INTEGER 02
   

phoneNumbers SEQUENCE{
phoneNumbers*1 INTEGER 5551212
phoneNumbers*2 INTEGER 5551313

   }
}
Figure 2. Text PDU for a Phone Book application



can be used to automate the test planning and gen-
erate the scripts used by protocol tester (or possi-
bly by PROTOS) automatically.

When investigating existing protocol descrip-
tion  languages, we discovered that almost all of 
them describe the syntax of the protocol, some de-
scribe the transfer syntax, and some describe the 
semantics of the protocol either as finite state 
machines[7] or as high level algorithms.  We are 
looking for constraints such as the permissible 
values of a version field, the relationship between 
a length field and the data item governed by the 
length field, or that a sequence of items must be 
unique.  In state and algorithm based protocol lan-
guages, extracting these relationships and con-
straints can be difficult.  Furthermore, many of 
the protocols we are interested in are not currently 
described in these extended languages.  Requiring 
an analyst to translate the prose in a standard pro-
tocol description to a finite state machine in order 
to extract simple constraints seems to be counter 
productive.

3. The New Protocol Tester

Figure 3 shows the structure of the new muta-
tor. The basic flow of the PDU data is the same. 

The binary PDU is translated to text, marked up 
with instructions to generate multiple variant 
PDUs, an execution engine implements the 
markup and the mutant PDUs are translated back 
to binary.

This basic flow is extended with a protocol de-
scription expressed in SCL and a test planning en-
gine. The protocol description is designed for a 
human test engineer to read and write. The infor-
mation in this description is used in two ways. 
The first is to generate protocol syntax and transfer 
information for the decoder to decode the binary 
PDU that was retrieved from the network.  It is 
also used by the encoder to re-encode the packet for 
injection.

The other way the protocol description is used 
is by the test planner. A design recovery extractor 
is run over the protocol description to generate an 
instance of an Entity-Relationship model that con-
tains the information in the protocol in a form 
easily used by the test planner. Protocols usually 
describe more than one PDU type (multiple re-
quest PDU types, various response PDU types). 
The ER model contains the constraints for all of 
the PDU types, which may include constraints not 
relevant to the captured PDU. So the first task of 
the test planner is to filter the information in the 
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ER instance based on the PDU to be mutated.
The test planner [14] then invokes appropriate 

test plans for each of the remaining constraints. 
These are invoked by using the markup engine to 
markup the appropriate fields. The rest of this pa-
per deals with the protocol description language, 
and the model that is extracted from the descrip-
tion.

4. SCL: Semantically Extended ASN.1

SCL extends the ASN.1 language with XML 
style markup. There are three XML markup 
blocks that may be added to an ASN.1 Grammar 
production in SCL. These are size, transfer and 
constraints markup.  The size markup is used to 
identify the size of each element. The transfer ele-
ment is used to identify constraints that are used 
to determine the binary encoding of the informa-
tion. The constraints markup is used to identify 
other semantic constraints that must be imple-
mented by applications.

We introduce our protocol description language 
with an example fictitious protocol. This proto-
col, the Simple Pseudo Protocol (SPP), is de-
signed to show the various features of SCL. We 
first show the ASN.1 core of the protocol and 
then present the extensions provided by SCL and 
the extracted model.

4.1. SPP: an Example Protocol

Figure 4 shows the ASN.1 description of the 
SPP protocol.  As with a traditional description of 
network protocols given in ASN.1, we describe 
the semantic constraints in textual prose.

The protocol consists of two types of PDUs, 
net-info PDUs which contain network configura-
tion information, and room-loc PDUs which con-
tain information on physical locations.  Both start 
with the same header, which contains two fields. 
The first field is 2 bytes long and gives the length 
of the PDU, the second is also 2 bytes and identi-
fies the type of the PDU. A value of 1 means a 
net-info PDU and a value of 2 means a room-info 
PDU.

The net-info PDUs contain lists of addresses. 
Each address is one of three types, an IP address, a 
MAC address or an error code.  The numOfSubH 
field (1 byte) gives the number of addresses in the 
subheader field.

Each address consists of a single byte type field 
(1 = IP, 2 = MAC and 3 = Error) and a value, the 
data type and length of which depends on the type 
of address. IP addresses are 4 byte integers, MAC 
addresses are 6 byte octet strings and ErrorCodes 
are 2 byte integers.

The room-info PDU consists of only a header 
and a set of room info items. The number of room 

PDU ::= (net-info | room-loc) MAC-Address ::= SEQUENCE {
  subType      INTEGER

header ::= SEQUENCE {   macaddress   OCTET STRING
  length      INTEGER }
  sppType     INTEGER
} ErrCode ::= SEQUENCE {

  subType      INTEGER
net-info ::= SEQUENCE {   code         INTEGER
  headerNfo   header }
  numOfSubH   INTEGER
  subheader   SET OF address room-loc ::= SEQUENCE {
}   headerNfo    header

  subheader    SET OF room-info
address ::= (IP-Address| }
        MAC-Address | ErrCode)

room-info ::= SEQUENCE {
IP-Address ::= SEQUENCE {   floor        INTEGER
  subType     INTEGER   officeNumber INTEGER
  ipaddress   INTEGER   extension    VISIBLESTRING
} }

Figure 4.  ASN.1 Description of SPP



info items is determined by the remaining bytes of 
the PDU. Each room info item is a constant 
length, consisting of a floor number (2 byte inte-
ger) and office number (2 byte integer) and a ex-
tension number (4 byte visible string).

A textual description of the typical protocol 
will also describe the flow of data between appli-
cations. We do not model this in SCL since Pro-
tocol Tester does not test relationships between 
packets at this time.

4.2 Semantic Markup in SCL

As mentioned earlier, there are three XML 
markup blocks that may be added to an ASN.1 
grammar production in SCL: size, transfer and 
constraints.

The first of these, the size markup, is used to 
specify the sized of primitive fields. We use the 
following markup for the header definition.

<size>
  length is 2 bytes
  sppType is 2 bytes
</size>

Similar encodings are used for all sequences.  
The type used in the grammar specification sim-
ply states how the bytes will be interpreted. For 
example, the grammar portion identifies subtype 
as an INTEGER and macaddress as an OCTET 
STRING. The size markup for Mac-Address is 

<size>
   subType is 1 bytes
   macaddress is 6 bytes
</size>

Thus subtype is a 1 byte INTEGER and macad-
dress is a 6 byte OCTET STRING.

When the size of a compound field is deter-
mined only by the size of its subfields, it is iden-
tified as SELFDEFINED. Fields whose size is de-
termined by the value of some other field are iden-
tified as CONSTRAINED.  For example the size 
markup for the net-info sequence is:

<size>
   headerNfo is SELFDEFINED
   numOfSubH is 1 bytes
   subheader is CONSTRAINED
</size>

The transfer block specifies constraints that are 
used when decoding and encoding the data. They 
are also used when testing. For example, a length 
constraint identifies situations where the length of 
one or more fields depends on the value of another 
field.  While this is used when encoding and de-
coding a PDU, it is also a potential vulnerability 
in implementations [18].  The three constraints 
used here are: match constraints (the value of a 
field identifies which PDU is used), length and 
cardinality constraints. For example, the transfer 
markup for the net-info grammar production is:

<transfer>
  MATCHES(headerNfo.sppType==1)
  CARDINALITY(subheader) ==
     numofSubH
</transfer>

The final markup block is the constraints 
block.  It covers more general constraints.  Two 
constraints are currently implemented: value and 
order constraints.  The value constraint is used to 
limit the number or range of legal values for a 
field.  For example, the valid error codes are 1, 2 
and 3. Thus, the markup for the ErrCode grammar 
production is:

<constraints>
  VALUE(code) == 1|2|3
<constraints>

The order constraint indicates that the values in 
an array field must be sorted by one or more sub-
fields. An example is the path attribute in the Bor-
der Gateway Protocol. Path attributes have a type 
code located in the third byte of each attribute.  
Although ordering of attributes is not specified in 
the standard, some vendor-specific devices require 
that the path attributes must be ordered by the type 
code. In the SPP protocol, the room-info items 
must be sorted first by floor and second by office 
number. The constraint block for the room-loc 
production looks like:

<constraints>
  ORDER(subheader) = ASCENDING

USING(subheader.floor&
subheader.officeNumber)          

<constraints>



Figure 5 shows the entire SPP protocol speci-
fied in SCL.

4.3 Checking and Model Extraction

Since SCL is an input to the system, it must 
be checked for errors. This is done using the TXL 
programming language[4].  We use TXL to check 
for the errors and to extract the protocol model 
from the SCL specification.

TXL has a built in parser that will report any 
syntax errors in the SCL program. This is aug-
mented by TXL rules which check that all non-
terminals that are used are defined exactly once, 
that all terminal fields have a known type and as-
sociated size constraints in the size markup. It 
also makes sure that all fields of a given record are 
uniquely named and the all of the references to 
fields in constraints are consistent.  It also checks 
that only predefined functions are used in the con-
straints.

A separate TXL program is used to extract the 
protocol model from SCL. The model is repre-
sented in Rigi Standard Fomat (RSF).  The model 
contains an unordered abstract syntax tree of the 
grammar, allowing the test planner to identify the 
parent child relationship between fields and the re-
cords that contain them.

The model also contains the text of the con-
straints as well as the an abstract model of the 
constraints. That is, the relations in the model 
identify which fields are involved in value, cardi-
nality, ordered and length constraints.  The test 
planner module can then mutate those fields based 
on the constraints.

4.4. Validation

We have validated the SCL language against 
both the OSPF and BGP protocols. Both proto-
cols are frame based protocols with multiple types 
of PDUs. This validation has two components.

The first is that we have validated that the de-
scription is capable of describing the encoding of 
these protocols so that the decoder can translate 
instances of each packet type of the OSPF and 
BGP protocols from the binary to the textual 
form. This was done by decoding captured in-
stances of each type of packet and manually veri-
fying that the decoding was done correctly.

We have also manually checked that the model 

recovered from the specification includes the infor-
mation necessary to generate scripts for Protocol 
Tester. In particular, we have verified that the in-
formation necessary to automatically generate the 
test scripts used to discover previously known 
vulnerabilities in OSPF is contained in the model. 
The implementation of the automated test planner 
is part of ongoing research [14].

5. Future Work

The system we have described is a very general 
infrastructure with a great deal of potential. Some 
of the future work we are planning on pursuing 
includes the following research.

The current protocols we have investigated are 
state independent protocols.  That is, the protocols 
exist as request/response exchanges – send a re-
quest to a server and get a response. Each request 
is, in some sense, independent.  Extending the 
framework to deal with stateful protocols such as 
SMB (the Windows file sharing protocol) and 
Voice over IP protocols is an interesting avenue to 
pursue. This will involve analyzing constraints 
between packets and generating mutated packet se-
quences. SCL will be extended with additional 
constraint primitives which can, in turn, be used 
by the test planner.

The protocols currently described are binary 
protocols.  Textual protocols such as HTTP, 
SMTP and SOAP (XML over HTTP) can also be 
security tested using a transformation based proc-
ess. The interesting part of these protocols is that 
the decoder/encoder becomes redundant, and transfer 
encoding is textual.

The current approach is also based on a black 
box approach.  On some occasions when we have 
had source code to the test system, we have tracked 
down the bug in the system manually.  Expanding 
to a white box style of testing has some potential. 
One option is to use the erroneous PDU to isolate 
the error automatically.  The other option is to use 
a light weight program comprehension/design re-
covery step to identify potential security failures 
in the system.  A full comprehension approach 
can be expensive both in time and resources. A 
light weight identification could be more aggres-
sive in identifying potential vulnerabilities which 
are used to provide information to the test planner.

Alternatively, we can have the developers pro-
vide some information to the test planner. The re-



PDU ::= (net-info | room-loc) ErrCode ::= SEQUENCE {
  subType      INTEGER

header ::= SEQUENCE {   code         INTEGER
  length      INTEGER }
  sppType     INTEGER <size>
}   subType is 1 byte
<size>   code is 2 bytes
   length is 2 bytes </size>
   sppType is 2 bytes <transfer>
</size>   MATCHES(subType == 3)

</transfer>
net-info ::= SEQUENCE { <constraints>
  headerNfo   header   VALUE(code) == 1|2|3
  numOfSubH   INTEGER <constraints>
  subheader   SET OF address
} room-loc ::= SEQUENCE {
<size>   headerNfo    header
   headerNfo is SELFDEFINED   subheader    SET OF room-info
   numOfSubH is 1 bytes }
   subheader is CONSTRAINED <size>
</size>   headerNfo is SELFDEFINED
<transfer>   subheader is CONSTRAINED
  MATCHES(headerNfo.sppType == 1) </size>
  CARDINALITY(subheader) = <transfer>
      numOfSubH   MATCHES(headerNfo.sppType == 2)
</transfer>   LENGTH(subheader) = 

PDULENGTH - SIZEOF(headerNfo)
address ::= (IP-Address| <transfer>
        MAC-Address | ErrCode) <constraints>

  VALUE(headerNfo.length) ==
IP-Address ::= SEQUENCE { PDULENGTH
  subType     INTEGER   ORDER(subheader) = ASCENDING 
  ipaddress   INTEGER     USING(subheader.floor &
}        subheader.officeNumber)
<size> </constraints>
   subType is 1 byte
   ipaddress is 4 bytes room-info ::= SEQUENCE {
</size>   floor        INTEGER
<transfer>   officeNumber INTEGER
   MATCHES(subType == 1)   extension    VISIBLESTRING
</transfer> }

<size>
MAC-Address ::= SEQUENCE {   floor is 2 bytes
  subType      INTEGER   officeNumber is 2 bytes
  macAddress   OCTET STRING   extension is 4 bytes
} </size>
<size>
  subType is 1 byte
  macAddress is 6 bytes
</size>
<transfer>
   MATCHES(subType == 2)
<transfer>

Figure 5. SCL Description of SPP



cent OSPF bug exposed a dependency in some 
versions of CISCO routers between certain re-
quests and the value of the hello timer in the 
router.  While the implementation of the hello 
timer is not part of the protocol, the existence and 
the relationship between the hello timer and cer-
tain PDUs is.  Adding abstract implementation 
entities and the relationship to the protocol de-
scription can help test the implementations.

We have also started to develop an Eclipse 
plugin. The plugin includes an editor for the SCL 
language. The SCL editor shows only the ASN.1 
subset of SCL, hiding the XML markup from the 
user. The analysis uses the editor to express con-
straints which are inserted whenever the file is 
saved.

6. Conclusions

One of the deficiencies with Protocol Tester 
and PROTOS is that manual effort and expertise 
is needed to design tests sets when performing 
vulnerability testing of network applications.

This paper has presented SCL, a language de-
signed to express the syntax and context sensitive 
constraints of protocols. This information can be 
used to decode binary packets into a textual form, 
but, more importantly, is used by the test plan-
ning phase to automatically generate test scripts 
for Protocol Tester. This reduces the manual effort 
needed when testing implementations of new (and 
old) protocols. The allows the analyst to work 
with SCL at a higher level of abstraction, much 
closer to the actual protocol specification. The 
SCL language has been validated by expressing 
two existing protocols, OSPF and  BGP, extract-
ing protocol models suitable for scripting Proto-
col Tester from the SCL descriptions.
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