
Abstract

Security of network applications has become
increasingly important in the past several years.
Syntax-based testing is a black box, data driven
testing technique, for applications for which input
can be described formally. SCL is a component of
Protocol Tester, a project at RMC and Queen's,
that uses syntax-based testing to evaluate the se-
curity of network applications. As a language,
SCL can describe the syntax and the semantic
constraints of a given protocol, constraints that
pertain to the testing of network application secu-
rity. This paper describes how SCL captures the
input syntax of a network application including
both syntax and semantic constraints. Standard re-
verse engineering and program comprehension
techniques are used to extract a detailed model
from the description. This model can be used to
automate the selection and generation of test cases
in Protocol Tester.1

1. Introduction

The security of network applications is an in-
creasingly important topic in both academia and
industry. The cheap availability of bandwidth
world wide has increased the ability of people to
communicate, but has also provided convenient
access to many systems for those with malicious
intent. This increased access to bandwidth is not
just access to the internet, but other networks
such as the cellular phone networks (both voice
and data). Additionally, implementations formerly
Copyright © 2005 Sylvain Marquis, Thomas Dean,
Scott Knight. Permission to copy is hereby granted
provided the original copyright notice is reproduced
in copies made.

restricted to executing on closed network protocols
are moving to public protocols such as the move
of telephone networks from packet switched net-
works to Voice over IP protocols.

Some recent incidents include vulnerabilities in
libraries used to display images (BMP[17] and
JPG[15]), a vulnerability in Cisco routers running
OSPF[3,16], and a proof of concept suggesting
computer viruses can propagate on cellular
phones[1].

Conformance testing of these applications
tends to focus on the correct implementation of
the application to valid requests and obvious er-
rors. However, in some cases, certain security vul-
nerabilities involve a data item that could not pos-
sibly occur in the normal operation of a protocol.
For instance, at different occasions during the
course of a TCP connection, state information is
exchanged using the control flags located in packet
headers.

One of the tactics developed by intruders in the
mid-1980’s was to enable every single control
flags in the same packet, called the Xmas tree
packet. The packet was sent to the target
matchine, effectively sending functionally mean-
ingless data to a TCP stack. Vulnerable stacks
would then fail, compromising the machine. This
became an effective Denial of Service attack.

TCP/IP and a number of other network appli-
cations exchange units of information using pro-
tocol data units (PDU), units composed of one or
more fields; in turn consisting of a contiguous
stream of bits or bytes. A PDU may be a single
packet, or it may be spread over multiple packets.
The order and arrangement of fields within PDUs
corresponds to a specific syntax [2]. Syntax-based
testing of network applications [10,19,21] use that
syntax.

SCL: A Language for Security Testing of Network Applications

Sylvain Marquis Thomas R Dean Scott Knight
Royal Military College of Canada Queen’s University Royal Military College of Canada

Kingston, Canada Kingston, Canada Kingston, Canada
sylvain.marquis@rmc.ca dean@cs.queensu.ca knight-s@rmc.ca

Using their own generation engines, both re-
search of PROTOS [10] and Protocol Tester [19]
gave results that demonstrated the feasibility of
generating a large number of malformed PDUs
based on the specification of a relatively small set
of modifications commands by the human analyst.

In a previous research [18], Protocol Tester
technique was used to make the technique of ex-
ploiting sophisticated constraints more efficient,
the intervention of the analyst, to write new
constraint-exploiting scripts needs to be reduced.

The Structure and Context-Sensitive language
(SCL) was created to capture interesting
application-level constraints on the syntax of
PDUs by adding extensions to a subset of ASN.1.
The goal of these extensions is to capture the
application-level constraints on individual PDU
fields and constraints between the value of one
field and the syntax of another field, such con-
straints are called context-sensitive. This allows
the analyst to work with SCL at a higher level of
abstraction, much closer to the actual protocol
specification. This paper discusses SCL, how it
captures constraints and how it was validated.

2. Background

Syntax-based testing as defined by Beizer, [2]
is a black box technique used to test the robust-
ness of implementations that take structured data
as input (text or binary). He identifies several mu-
tation strategies to be applied to the input, or in
the case of security vulnerability testing, to
PDUs:

Syntax errors which consist of violations in
the construction of more complex structures by
adding, removing or altering the order of PDU

fields.
Delimiter errors which alter the characters that

appear as separators between fields. This includes
changing the size of fixed length fields.

Value Errors which include using values that
may be acceptable according to the input grammar,
but are incompatible with the implementation or
with other values in the data. An example is ver-
sion fields which are sometimes used to identify
the version of the protocol. Typically only a lim-
ited number of values are valid in the version field.

Recursion. Loops and recursions are checked
with single and multiple iterations. One measure
of the robustness of an application is how it deals
with structures that exceed iteration and recursion
limits of the application.

 The PROTOS project[10,11] at Oulu Univer-
sity uses syntax testing to test the security of pro-
tocol implementations. They use higher order at-
tribute grammars and a walker to generate the vari-
ant PDUs. The grammar specifies the possible
PDUs down to the values of the terminal fields.
The grammar is modified using a scripting lan-
guage that allows the tester to modify values of
terminals, add alternative values, and add alterna-
tive productions to the grammars.

The higher order attribute actions are written in
Java and are triggered as the walker visits nodes in
the grammar tree. Some of the actions include cal-
culating checksums, sending and receiving pack-
ets.

While the general goal is the same, our ap-
proach is different. We capture a valid set of data
by sniffing the network and transform it to gener-
ate mutant packets. The first version of Protocol
Tester also uses a scripting language to drive the
testing process.

Mutator

Test
System

Client
System

Sniffer

PDU Decode

Text
PDU

Markup Execution

Injector

Text
PDUs

Encode

Figure 1. Protocol Tester General Structure

Figure 1 shows the overall structure of Proto-
col Tester [18,19,20]. At the bottom of the figure
we have a network containing the test system and
a client system that is interacting with the test
system. A sniffer is used to capture a valid PDU
that was sent from the client to the test system.
The PDU at this point in time is a binary data
file. This file is decoded into a textual representa-
tion by a decoder.

The markup and execution engine, imple-
mented in TXL[4], are used to generate variants of
the packet which are then re-encoded and injected
into the network. The original, valid packet is in-
jected between each of the mutated packets to ver-
ify that the test system is still functional and re-
sponsive.

The markup and execution approach is modeled
on previous software evolution and transformation
research [5]. This approach separates the planning
of the testing suite from the execution of the test-
ing suite. The markup that is generated is rather
simple. It includes markup to delete a field,
change the encoding of a field, duplicate a field,
change the value of a field, and other similar
tasks. The execution engine carries out most of
the markup (encoding markup is carried out by the
encoder).

Thus markup is always done on the original
valid packet, while execution generates the modi-
fied packets. The markup phase may generate
more than one marked up packet, each of which is
independent. This separation of concerns is im-
portant. Testing strategies that depend on simul-
taneous changes to multiple fields communicate
through the markup. That is, they simultaneously
make markup to multiple fields. The execution
engine, responsible for implementing the trans-
forms, need not know about relationship between
fields.

Protocol Tester has been used to independently
verify known vulnerabilities in Trivial FTP
(TFTP) and Simple Network Management
(SNMP) implementations and has been used to
test X.509, OSPF and BGP implementations. In
both the X.509 and OSPF tests, new vulnerabili-
ties were discovered by Protocol Tester [18,19].

One deficiency in both PROTOS and Protocol
tester is that the test planning must be done
manually. In both cases a scripting language is
used to identify particular fields of the PDU for
mutation, either by name, by pattern or by type.

As an example, Figure 2 shows the textual
form of a PDU exchanged between clients of a fic-
titious phone book applications. In the figure,
each field value is preceeded with a label name and
a keyword giving the type. All fields are included
in a composite SEQUENCE field where the order
of fields represent their application syntax. The
first field of phoneBook PDU contains an integer
number, the second field, phoneNumbers, contains
two other integer fields each representing a phone
number.

While the syntax of phoneBook states the type
and placement of every PDU field, other more so-
phisticated constraints are not shown and need to
be described in prose. The value of number-
OfPhoneNumber gives the cardinality, or number
of elements in the phoneNumbers field. The phone
book application also requires that no more than
20 phone numbers may be sent in the same
phoneBook PDU. A last application constraint re-
quires phoneNumbers to be sorted in an ascending
numeric order. Consequently, 5551212 must al-
ways be placed before the other phone number,
5551313.

In the previous version of Protocol Tester, the
human analyst provides a script with commands to
swap the elements of the phoneNumbers field or
change the values of the numberOfPhoneNumber
field as well as other possible changes. The ana-
lyst is not making the changes at random. Each
command in the script is targeting an application
constraint. The are derived from the semantic in-
formation describe of the protocol specification.
Changing the order of the fields of phoneNumbers
breaks the order constraint. Changing the value of
the numberOfPhoneNumber field breaks the con-
straint between the value field and the number of
elements of the phoneNumbers fields.

This shows the need for some notation or pro-
tocol description language which captures the con-
straints applied to PDU field values as a conse-
quence of the application semantics. The notation

phoneBook SEQUENCE{
 numberOfPhoneNumber INTEGER 02

phoneNumbers SEQUENCE{
phoneNumbers*1 INTEGER 5551212
phoneNumbers*2 INTEGER 5551313

 }
}
Figure 2. Text PDU for a Phone Book application

can be used to automate the test planning and gen-
erate the scripts used by protocol tester (or possi-
bly by PROTOS) automatically.

When investigating existing protocol descrip-
tion languages, we discovered that almost all of
them describe the syntax of the protocol, some de-
scribe the transfer syntax, and some describe the
semantics of the protocol either as finite state
machines[7] or as high level algorithms. We are
looking for constraints such as the permissible
values of a version field, the relationship between
a length field and the data item governed by the
length field, or that a sequence of items must be
unique. In state and algorithm based protocol lan-
guages, extracting these relationships and con-
straints can be difficult. Furthermore, many of
the protocols we are interested in are not currently
described in these extended languages. Requiring
an analyst to translate the prose in a standard pro-
tocol description to a finite state machine in order
to extract simple constraints seems to be counter
productive.

3. The New Protocol Tester

Figure 3 shows the structure of the new muta-
tor. The basic flow of the PDU data is the same.

The binary PDU is translated to text, marked up
with instructions to generate multiple variant
PDUs, an execution engine implements the
markup and the mutant PDUs are translated back
to binary.

This basic flow is extended with a protocol de-
scription expressed in SCL and a test planning en-
gine. The protocol description is designed for a
human test engineer to read and write. The infor-
mation in this description is used in two ways.
The first is to generate protocol syntax and transfer
information for the decoder to decode the binary
PDU that was retrieved from the network. It is
also used by the encoder to re-encode the packet for
injection.

The other way the protocol description is used
is by the test planner. A design recovery extractor
is run over the protocol description to generate an
instance of an Entity-Relationship model that con-
tains the information in the protocol in a form
easily used by the test planner. Protocols usually
describe more than one PDU type (multiple re-
quest PDU types, various response PDU types).
The ER model contains the constraints for all of
the PDU types, which may include constraints not
relevant to the captured PDU. So the first task of
the test planner is to filter the information in the

Decoder

Markup

Execution

Encode

Protocol
Description

Valid
PDU

Mutant
Markup
PDUs

Textual
PDU

Mutant
PDUs
(text)

Mutant
PDUs

(binary)

Script

Extract

Protocol
Model

Test
Planner

test
database

Figure 3. Mutator Structure

ER instance based on the PDU to be mutated.
The test planner [14] then invokes appropriate

test plans for each of the remaining constraints.
These are invoked by using the markup engine to
markup the appropriate fields. The rest of this pa-
per deals with the protocol description language,
and the model that is extracted from the descrip-
tion.

4. SCL: Semantically Extended ASN.1

SCL extends the ASN.1 language with XML
style markup. There are three XML markup
blocks that may be added to an ASN.1 Grammar
production in SCL. These are size, transfer and
constraints markup. The size markup is used to
identify the size of each element. The transfer ele-
ment is used to identify constraints that are used
to determine the binary encoding of the informa-
tion. The constraints markup is used to identify
other semantic constraints that must be imple-
mented by applications.

We introduce our protocol description language
with an example fictitious protocol. This proto-
col, the Simple Pseudo Protocol (SPP), is de-
signed to show the various features of SCL. We
first show the ASN.1 core of the protocol and
then present the extensions provided by SCL and
the extracted model.

4.1. SPP: an Example Protocol

Figure 4 shows the ASN.1 description of the
SPP protocol. As with a traditional description of
network protocols given in ASN.1, we describe
the semantic constraints in textual prose.

The protocol consists of two types of PDUs,
net-info PDUs which contain network configura-
tion information, and room-loc PDUs which con-
tain information on physical locations. Both start
with the same header, which contains two fields.
The first field is 2 bytes long and gives the length
of the PDU, the second is also 2 bytes and identi-
fies the type of the PDU. A value of 1 means a
net-info PDU and a value of 2 means a room-info
PDU.

The net-info PDUs contain lists of addresses.
Each address is one of three types, an IP address, a
MAC address or an error code. The numOfSubH
field (1 byte) gives the number of addresses in the
subheader field.

Each address consists of a single byte type field
(1 = IP, 2 = MAC and 3 = Error) and a value, the
data type and length of which depends on the type
of address. IP addresses are 4 byte integers, MAC
addresses are 6 byte octet strings and ErrorCodes
are 2 byte integers.

The room-info PDU consists of only a header
and a set of room info items. The number of room

PDU ::= (net-info | room-loc) MAC-Address ::= SEQUENCE {
 subType INTEGER

header ::= SEQUENCE { macaddress OCTET STRING
 length INTEGER }
 sppType INTEGER
} ErrCode ::= SEQUENCE {

 subType INTEGER
net-info ::= SEQUENCE { code INTEGER
 headerNfo header }
 numOfSubH INTEGER
 subheader SET OF address room-loc ::= SEQUENCE {
} headerNfo header

 subheader SET OF room-info
address ::= (IP-Address| }
 MAC-Address | ErrCode)

room-info ::= SEQUENCE {
IP-Address ::= SEQUENCE { floor INTEGER
 subType INTEGER officeNumber INTEGER
 ipaddress INTEGER extension VISIBLESTRING
} }

Figure 4. ASN.1 Description of SPP

info items is determined by the remaining bytes of
the PDU. Each room info item is a constant
length, consisting of a floor number (2 byte inte-
ger) and office number (2 byte integer) and a ex-
tension number (4 byte visible string).

A textual description of the typical protocol
will also describe the flow of data between appli-
cations. We do not model this in SCL since Pro-
tocol Tester does not test relationships between
packets at this time.

4.2 Semantic Markup in SCL

As mentioned earlier, there are three XML
markup blocks that may be added to an ASN.1
grammar production in SCL: size, transfer and
constraints.

The first of these, the size markup, is used to
specify the sized of primitive fields. We use the
following markup for the header definition.

<size>
 length is 2 bytes
 sppType is 2 bytes
</size>

Similar encodings are used for all sequences.
The type used in the grammar specification sim-
ply states how the bytes will be interpreted. For
example, the grammar portion identifies subtype
as an INTEGER and macaddress as an OCTET
STRING. The size markup for Mac-Address is

<size>
 subType is 1 bytes
 macaddress is 6 bytes
</size>

Thus subtype is a 1 byte INTEGER and macad-
dress is a 6 byte OCTET STRING.

When the size of a compound field is deter-
mined only by the size of its subfields, it is iden-
tified as SELFDEFINED. Fields whose size is de-
termined by the value of some other field are iden-
tified as CONSTRAINED. For example the size
markup for the net-info sequence is:

<size>
 headerNfo is SELFDEFINED
 numOfSubH is 1 bytes
 subheader is CONSTRAINED
</size>

The transfer block specifies constraints that are
used when decoding and encoding the data. They
are also used when testing. For example, a length
constraint identifies situations where the length of
one or more fields depends on the value of another
field. While this is used when encoding and de-
coding a PDU, it is also a potential vulnerability
in implementations [18]. The three constraints
used here are: match constraints (the value of a
field identifies which PDU is used), length and
cardinality constraints. For example, the transfer
markup for the net-info grammar production is:

<transfer>
 MATCHES(headerNfo.sppType==1)
 CARDINALITY(subheader) ==
 numofSubH
</transfer>

The final markup block is the constraints
block. It covers more general constraints. Two
constraints are currently implemented: value and
order constraints. The value constraint is used to
limit the number or range of legal values for a
field. For example, the valid error codes are 1, 2
and 3. Thus, the markup for the ErrCode grammar
production is:

<constraints>
 VALUE(code) == 1|2|3
<constraints>

The order constraint indicates that the values in
an array field must be sorted by one or more sub-
fields. An example is the path attribute in the Bor-
der Gateway Protocol. Path attributes have a type
code located in the third byte of each attribute.
Although ordering of attributes is not specified in
the standard, some vendor-specific devices require
that the path attributes must be ordered by the type
code. In the SPP protocol, the room-info items
must be sorted first by floor and second by office
number. The constraint block for the room-loc
production looks like:

<constraints>
 ORDER(subheader) = ASCENDING

USING(subheader.floor&
subheader.officeNumber)

<constraints>

Figure 5 shows the entire SPP protocol speci-
fied in SCL.

4.3 Checking and Model Extraction

Since SCL is an input to the system, it must
be checked for errors. This is done using the TXL
programming language[4]. We use TXL to check
for the errors and to extract the protocol model
from the SCL specification.

TXL has a built in parser that will report any
syntax errors in the SCL program. This is aug-
mented by TXL rules which check that all non-
terminals that are used are defined exactly once,
that all terminal fields have a known type and as-
sociated size constraints in the size markup. It
also makes sure that all fields of a given record are
uniquely named and the all of the references to
fields in constraints are consistent. It also checks
that only predefined functions are used in the con-
straints.

A separate TXL program is used to extract the
protocol model from SCL. The model is repre-
sented in Rigi Standard Fomat (RSF). The model
contains an unordered abstract syntax tree of the
grammar, allowing the test planner to identify the
parent child relationship between fields and the re-
cords that contain them.

The model also contains the text of the con-
straints as well as the an abstract model of the
constraints. That is, the relations in the model
identify which fields are involved in value, cardi-
nality, ordered and length constraints. The test
planner module can then mutate those fields based
on the constraints.

4.4. Validation

We have validated the SCL language against
both the OSPF and BGP protocols. Both proto-
cols are frame based protocols with multiple types
of PDUs. This validation has two components.

The first is that we have validated that the de-
scription is capable of describing the encoding of
these protocols so that the decoder can translate
instances of each packet type of the OSPF and
BGP protocols from the binary to the textual
form. This was done by decoding captured in-
stances of each type of packet and manually veri-
fying that the decoding was done correctly.

We have also manually checked that the model

recovered from the specification includes the infor-
mation necessary to generate scripts for Protocol
Tester. In particular, we have verified that the in-
formation necessary to automatically generate the
test scripts used to discover previously known
vulnerabilities in OSPF is contained in the model.
The implementation of the automated test planner
is part of ongoing research [14].

5. Future Work

The system we have described is a very general
infrastructure with a great deal of potential. Some
of the future work we are planning on pursuing
includes the following research.

The current protocols we have investigated are
state independent protocols. That is, the protocols
exist as request/response exchanges – send a re-
quest to a server and get a response. Each request
is, in some sense, independent. Extending the
framework to deal with stateful protocols such as
SMB (the Windows file sharing protocol) and
Voice over IP protocols is an interesting avenue to
pursue. This will involve analyzing constraints
between packets and generating mutated packet se-
quences. SCL will be extended with additional
constraint primitives which can, in turn, be used
by the test planner.

The protocols currently described are binary
protocols. Textual protocols such as HTTP,
SMTP and SOAP (XML over HTTP) can also be
security tested using a transformation based proc-
ess. The interesting part of these protocols is that
the decoder/encoder becomes redundant, and transfer
encoding is textual.

The current approach is also based on a black
box approach. On some occasions when we have
had source code to the test system, we have tracked
down the bug in the system manually. Expanding
to a white box style of testing has some potential.
One option is to use the erroneous PDU to isolate
the error automatically. The other option is to use
a light weight program comprehension/design re-
covery step to identify potential security failures
in the system. A full comprehension approach
can be expensive both in time and resources. A
light weight identification could be more aggres-
sive in identifying potential vulnerabilities which
are used to provide information to the test planner.

Alternatively, we can have the developers pro-
vide some information to the test planner. The re-

PDU ::= (net-info | room-loc) ErrCode ::= SEQUENCE {
 subType INTEGER

header ::= SEQUENCE { code INTEGER
 length INTEGER }
 sppType INTEGER <size>
} subType is 1 byte
<size> code is 2 bytes
 length is 2 bytes </size>
 sppType is 2 bytes <transfer>
</size> MATCHES(subType == 3)

</transfer>
net-info ::= SEQUENCE { <constraints>
 headerNfo header VALUE(code) == 1|2|3
 numOfSubH INTEGER <constraints>
 subheader SET OF address
} room-loc ::= SEQUENCE {
<size> headerNfo header
 headerNfo is SELFDEFINED subheader SET OF room-info
 numOfSubH is 1 bytes }
 subheader is CONSTRAINED <size>
</size> headerNfo is SELFDEFINED
<transfer> subheader is CONSTRAINED
 MATCHES(headerNfo.sppType == 1) </size>
 CARDINALITY(subheader) = <transfer>
 numOfSubH MATCHES(headerNfo.sppType == 2)
</transfer> LENGTH(subheader) =

PDULENGTH - SIZEOF(headerNfo)
address ::= (IP-Address| <transfer>
 MAC-Address | ErrCode) <constraints>

 VALUE(headerNfo.length) ==
IP-Address ::= SEQUENCE { PDULENGTH
 subType INTEGER ORDER(subheader) = ASCENDING
 ipaddress INTEGER USING(subheader.floor &
} subheader.officeNumber)
<size> </constraints>
 subType is 1 byte
 ipaddress is 4 bytes room-info ::= SEQUENCE {
</size> floor INTEGER
<transfer> officeNumber INTEGER
 MATCHES(subType == 1) extension VISIBLESTRING
</transfer> }

<size>
MAC-Address ::= SEQUENCE { floor is 2 bytes
 subType INTEGER officeNumber is 2 bytes
 macAddress OCTET STRING extension is 4 bytes
} </size>
<size>
 subType is 1 byte
 macAddress is 6 bytes
</size>
<transfer>
 MATCHES(subType == 2)
<transfer>

Figure 5. SCL Description of SPP

cent OSPF bug exposed a dependency in some
versions of CISCO routers between certain re-
quests and the value of the hello timer in the
router. While the implementation of the hello
timer is not part of the protocol, the existence and
the relationship between the hello timer and cer-
tain PDUs is. Adding abstract implementation
entities and the relationship to the protocol de-
scription can help test the implementations.

We have also started to develop an Eclipse
plugin. The plugin includes an editor for the SCL
language. The SCL editor shows only the ASN.1
subset of SCL, hiding the XML markup from the
user. The analysis uses the editor to express con-
straints which are inserted whenever the file is
saved.

6. Conclusions

One of the deficiencies with Protocol Tester
and PROTOS is that manual effort and expertise
is needed to design tests sets when performing
vulnerability testing of network applications.

This paper has presented SCL, a language de-
signed to express the syntax and context sensitive
constraints of protocols. This information can be
used to decode binary packets into a textual form,
but, more importantly, is used by the test plan-
ning phase to automatically generate test scripts
for Protocol Tester. This reduces the manual effort
needed when testing implementations of new (and
old) protocols. The allows the analyst to work
with SCL at a higher level of abstraction, much
closer to the actual protocol specification. The
SCL language has been validated by expressing
two existing protocols, OSPF and BGP, extract-
ing protocol models suitable for scripting Proto-
col Tester from the SCL descriptions.

About The Authors

Sylvain Marquis is a masters student in the
software engineering program at the Royal Milli-
ary College of Canada. His education background
is from the Royal Military College in Computer
Engineering where he studied the engineering top-
ics related to information systems, avionics and
marine components enenabling the operations of
Canadian Foreces equipment assets. His current
research interests are security of network-enabled
applications, fuzz testing and source code transfor-

mation.
Thomas Dean is an Assistant Professor in the

Department of Electrical and Computer Engineer-
ing at Queen’s University and an Adjunct Associ-
ate Professor at the Royal Military College in
Kingston. His background includes research in air
traffic control systems, language formalization,
and five and a half years as a Sr. Research Scien-
tist at Legasys Corporation where he worked on
advanced software transformation and evolution
techniques in an industrial setting. His current re-
search interests are software transformation, web
site evolution and the security of network applica-
tions.

Scott Knight is an Associate Professor in the
Department of Electrical and Computer Engineer-
ing at the Royal Military College of Canada; he is
also cross-appointed to Queen’s University. Dr.
Knight was appointed to the academic faculty at
RMC in 2000 on retirement from 21 years of
service in the Canadian Air Force. He has worked
with the National Defence Intelligence and Secu-
rity communities on the development of secure
computing networks to be used for handling clas-
sified and national security related information.
He has also founded the Computer Security Labo-
ratory at RMC, and continues to lead this research
group. this research group has a close working re-
lationship with the Canadian Forces Information
Operations Group and focuses on computer net-
work defence and support to information opera-
tions

References

[1] BBC, ‘Game virus’ bits mobile phones,
BBC news, UK edition, Aug. 11, 2004.

[2] Beizer, B., Software Testing Techniques, 2nd
Edition, Van Nostraad Reinhold, New York,
1990.

[3] Cisco, Cisco Security Advisory: Cisco IOS
Malformed OSPF Packet Causes Reload,
Document ID: 61365, Cisco Systems, San
Jose, California, Aug. 2004.

[4] J.R. Cordy, “TXL - A Language for Pro-
gramming Language Tools and Applica-
tions”, Proc. LDTA 2004, ACM 4th Inter-
national Workshop on Language Descrip-
tions, Tools and Applications, Edinburg,
Scotland, January 2005, pp. 3-31.

[5] Dean, T.R., Cordy, J.R., Schneider, K.A.,

Malton, A.J., "Using Design Recovery
Techniques to Transform Legacy Systems",
ICSM 2001 - The International Conference
on Software Maintenance, Florence, Italy,
November 2001, pp 622 - 631.

[6] Dubuisson, O., "ASN.1 Communication
between Heterogeneous Systems", Academic
Press, San Diego, 2001.

[7] M.G. Gouda, Elements of Protocol Design,
Wiley, New York, 1998.

[8] International Standard 8824 - INTERNA-
TIONAL TELECOMMUNICATION UN-
ION X.208, “Information technology --
Open Systems Interconnection -- Specifica-
tion of Abstract Syntax Notation One
(ASN.1)”, 1988.

[9] International Standard 8825-1 - INTERNA-
TIONAL TELECOMMUNICATION UN-
ION X.690, “Information Technology -
ASN.1 Encoding Rules: Specification of Ba-
sic Encoding Rules (BER), Canonical En-
coding Rules (CER) and Distinguished En-
coding Rules (DER)”, http:// www.itu.int
/ITUT/studygroups/com17/languages/X690_
0702.pdf, 2002.

[10] R. Kaksonen, A Functional Method for As-
sessing Protocol Implementation Security,
Licentiate Thesis. Espoo. Technical Re-
search Centre of Finland, VTT Publications
447. ISBN 951-38-5873-1

[11] R. Kaksonen, M. Laakso, A. Takanen,
"Software Security Assessment through
Specification Mutations and Fault Injec-
tion". Proc. of Communications and Multi-
media Security Issues of the New Century /
IFIP TC6/TC11 Fifth Joint Working Con-
ference on Communications and Multimedia
Security (CMS'01), Darmstadt, Germany,
May 2001, ISDN 0-7923-7365-0.

[12] Lougheed, K. Rekhter, Y. “A Border Gate-
way Protocol 4” (BGP-4), IETF 1995,
ftp://ftp.rfc-editor.org/in-notes/rfc1771.txt

[13] S. Marquis, A Protocol Messages Specifica-
tion Methodology for Security Vulnerability
Testing, M.Sc. Thesis, Dept of Electrical
and Computer Engineering, Royal Military
College of Canada, 2005.

[14] W. McInnnis, Developing Refined Strategies
for Vulnerability Testing on Network Proto-
cols Using Syntax Testing, M.Sc. Thesis,
Dept of Electrical and Computer Engineer-

ing, Royal Military college of Canada, in
progress.

[15] Microsoft, Buffer Overrun in JPEG Process-
ing (GDI+) Could Allow Code Execution,
Microsoft Security Bulletin MS04-28, Sept.
2004.

[16] Moy, J., OSPF Version 2, Internet RFC
2328, 1998..

[17] SecurityTracker.com, Microsoft Internet Ex-
plorer Integer Overflow in Processing Bit-
map Files Lets Remote Users Execute Arbi-
trary code, Security Tracker ID: 1009067,
Feb 2004.

[18] Tal, O., Knight, S., Dean., T., Syntax-based
Vulnerability Testing of Frame-based Net-
work Protocols, Proceedings of the Second
Annual Conference on Privacy, Security and
Trust, Fredericton, Canada, October 2004, 6
pp., to appear.

[19] Turcotte, Y., Syntax Testing of the Entrust
Public Key Infrastructure for security vul-
nerabilities in the X.509 Certificate, M.Sc.
Thesis, Department of Electrical and Com-
puter Engineering, Royal Military College
of Canada, 2003.

[20] Turcotte, Y., Oded, T., Knight, G.S., Dean,
T., “Security Vulnerabilities Assessment Of
the X.509 Protocol By Syntax–Based
Testing”, Proceedings of MILCOM 04,
Monterey, California, October 2004, 7
pages, to appear.

[21] S. Xiao, L. Deng, S. Li, X. Wang,
“Integrated TCP/IP Protocol Software Test-
ing for Vulnerability Detection:, Proc. 2003
International Conference on Computer Net-
works and Mobile Computing, Shanghi
china, Oct. 2003.

