
A Passive External Web Surveillance Technique for
Private Networks

Constantine Daicos and Scott Knight

Royal Military College of Canada

Abstract. The variety and richness of what users browse on the Internet
has made the communications of web-browsing hosts an attractive tar-
get for surveillance. We show that passive external surveillance of web-
browsing hosts in private networks is possible despite the anonymizing
effects of NATs and HTTP proxies at the gateway. These devices effec-
tively anonymize the origin of communication streams, and remove many
identifying features, making it difficult to group web traffic into mutually
disjoint same-host sets called user sessions. User sessions offer a complete
picture of each user’s web browsing experience. Without them, passive
external surveillance is of little use. This paper offers a content analysis
technique called Link Chaining that aids the sessionization process by re-
covering large pieces of user sessions called session fragments. The tech-
nique is based on the knowledge that the majority of downloaded web
resources are clicked-to from other web pages. By following hyperlinks in
the bodies of HTTP messages in passively collected trace data, web traffic
can be be coalesced into session fragments and used by human analysts
to isolate individual user sessions. The technique gives the human analyst
a significant advantage over manual methods. The implementation pre-
sented here has been tested on accumulated local data and demonstrates
the feasibility of the scheme.

1 Introduction

Given a raw trace of web traffic collected from the outside of a private network,
an adversary performing surveillance can be expected to take three steps:

1. Reconstruct TCP/IP connections from raw packets
2. Organize the connections into user sessions

(mutually disjoint same-host sets)
3. Browse the web content of each user session to gather intelligence

Without the effects of gateway devices, the second step is trivial. The adver-
sary logging packets from the outside can group them by the original host’s IP
address and produce user sessions. With (network address translation (NAT)
and HTTP proxies however, the original IP address and other identifying infor-
mation is absent, making it very difficult for to group traffic into user sessions.

Without any sophisticated techniques, an adversary performing surveillance
on the outside of any of these devices would be able to reconstruct individ-
ual TCP/IP connections, but would be unable to group those connections into

user sessions. The adversary would be forced to sessionize them manually. This
would involve evaluating the web content of every single connection and mak-
ing a best guess at which ones belong together. The problem is akin to accu-
rately assembling the pieces of many jigsaw puzzles jumbled together in one
box.

The Link Chaining Attack (LCA) of this research aids the adversary by au-
tomatically organizing TCP connections into groups we call session fragments.
Fragments are formed by following HTML hyperlinks across multiple TCP con-
nections. These fragments are much larger than individual connections, and
allow the adversary to assemble user sessions more quickly.

1.1 Related Work

The are three types of devices that pose increasing levels of difficulty to the
problem of grouping traffic into user sessions (mutually disjoint same-host sets).

1. NAT
2. Plain HTTP Proxy
3. Anonymizing HTTP Proxy

Although none are designed specifically for surveillance, existing techniques
[4, ?] can be used to sessionize traffic collected from the outside of NATs and
plain HTTP proxies, but not anonymizing HTTP proxies. The LCA was de-
signed to operate under the strict conditions of anonymizing HTTP proxy. There
is no known existing technique for doing this. The following three sections will
explain why.

1.2 NAT

With NAT in place, a large number of private addresses are mapped to a small
number of public addresses (often just one), so all traffic looks like it is com-
ing from a single host. When all communication is with the same IP, there is
no obvious way to differentiate the streams of traffic generated by individual
hosts.

Existing attacks like Bellovin’s IPid technique [4] can be re-purposed to
group NATed web traffic into user sessions. These attacks exploit the fact that
most NAT devices are configured to re-write only the IP address of packets.
Other fields are left untouched, passing through NAT unchanged from their
originating host. Bellovin traces the unchanged IPid field to reveal which pack-
ets come from the same host.

1.3 Plain HTTP Proxy

Web proxies are middlemen that fulfill transactions on the client’s behalf. With-
out a web proxy, HTTP clients talk directly to HTTP servers. With a web proxy,
two separate TCP connections are established: one between the client and HTTP

proxy, and one between the proxy and server. The use of this intermediary
means that, unlike NAT, the TCP/IP packet headers contain no identifying
features to differentiate streams emanating from different hosts. This renders
attacks like Bellovin’s IPid technique useless.

Original host information can still be found however, in the HTTP head-
ers of outgoing requests. Plainly configured HTTP proxies pass these headers
to the web server unchanged. If browsers in a network are not all configured
identically, these headers can be used [5] to resolve at least some of the HTTP
traffic to same-host sets. Of course, this assumes that the headers are present,
and have not been scrubbed by an anonymizing proxy.

1.4 Anonymizing HTTP Proxy

The HTTP Anonymizing Proxy performs the same functions as a plain proxy,
but scrubs all non-essential headers from outgoing requests. Without any head-
ers to uniquely identify distinct hosts, keying on HTTP headers is not at all
effective.

The Link Chaining Attack can be an effective technique under the condi-
tions of an anonymizing web proxy because the technique uses only those
HTTP artifacts which cannot be changed by the proxy. For example, HTTP
headers can be changed by intermediate devices, but the web content itself
cannot be changed in any meaningful way without affecting the browsing ex-
perience. The Link Chaining Attack takes advantage of this by reconstructing
individual web pages from the traffic stream and following the links they con-
tain forward in time to chain TCP connections into user session fragments.

1.5 The Effect of Web Caching

If some of the visited pages within a session are cached while others are not,
the ones that are cached will not be requested. Their absence on the outside
of the network means the chains of links will be broken, resulting in smaller
fragments. From an intelligence-gathering perspective, the content loss is likely
insignificant; caches store popular resources, and knowledge of a user’s access
to a popular resource reveals nothing unique about that user.

1.6 Research Goals

The aim of this work is to develop a technique that aids the analyst’s manual
sessionization by grouping TCP connections into fragments that are as large
and accurate as possible. The technique follows the hyperlinks in HTTP mes-
sages to identify the TCP connections that belong together. The theory is de-
scribed in section 2 and the experiment is outlined in section 3. Before present-
ing the results in section 5 we propose some metrics to evaluate the quality of
fragments isolated by our technique. In the analysis of section 6 we validate the
work by establishing a lower bound on the effective analyst speedup.

2 Theory

The Link Chaining technique coalesces independent TCP connections into same-
host groups by following hyperlinks in web pages. By matching the URLs con-
tained in the body of an HTTP response of one connection to the URLs in the
HTTP requests of all other connections, and judiciously removing impossible
or improbable links, it is possible to assemble fragments of user sessions.

Fig. 1. Chaining Two Independent TCP Connections

The TCP connection is the basic building block in this process. Figure 1 de-
picts the HTTP requests and responses of two independent TCP connections.
The figure illustrates how the independent connections TCP 1 and TCP 2 can
be chained by matching URLs. The hyperlink B in the first HTTP response of
the first connection is matched with the URL B in the first HTTP request of the
second connection.

The four phases of the Link Chaining technique are: Naive Chaining, Impos-
sible Link Removal, Unlikely Link Removal, and Session Fragment Isolation.
The first phase produces a tangled mass of edges and nodes representing all
possible links between all connections. The two subsequent phases chip away
at this mass, selectively removing impossible and unlikely links. By traversing
the edges of the isolated graphs that remain, connection nodes are aggregated
into groups. These groups of connections form session fragments. The process
is summarized in Figure 2.

The raw inputs to the LCA are reconstructed TCP streams, HTTP messages,
and the HTML hyperlinks they contain. Although these inputs are extracted
from logged packets using known methods, the difficulty of this process should
not be discounted. Before links can be extracted from web pages, the pages
must be accurately reconstructed from individual packets. In many cases, the
pages must also be decoded, uncompressed, parsed, and normalized. Relative
links must then be resolved to their absolute form, stored with contextual meta
data like timestamps and connection origin, and indexed appropriately for use
in the LCA. For link extraction to be comprehensive and accurate, the software

Fig. 2. Four Phases of the Link Chaining Attack

must also accomodate imperfect implementations of web protocols. These spec-
ifications essentially require the development of TCP/IP assembly and HTTP
parsing facilities comparable to those of a full-fledged web browser.

2.1 Naive Chaining

The first step of the Link Chaining technique is to naively match all response
URLs with all request URLs across all connections. A ”URL match” is defined
as a literal match between a URL in any response of one connection (e.g. in a
web page) and a URL in the first line of any request in another connection (e.g.
in a GET request). The complete set of URL matches can be represented as a list
of adjacencies (ordered pairs) forming one or more directed graphs, where each
node is a TCP connection.

Naive chaining identifies every single adjacency. This includes adjacencies
representing link traversals that never actually occurred. By including all adja-
cencies, naive chaining produces a set of comprehensive starting graphs for the
Link Chaining Attack. Many edges must be removed from these graphs before
individual user session fragments can be isolated.

2.2 Removing Impossible Adjacencies

In the second phase of Link Chaining, the impossible edges in the graphs are
removed. An edge is considered impossible if the link traversal it represents
could never happen. The TCP and HTTP protocol mechanisms impose struc-
tural and temporal constraints on the traversal of links. Certain connections
cannot be chained because it would imply an impossible link traversal. Two
impossibilities are defined based on these constraints:

1. Connections Chained Backward in Time
2. URLs Chained Backward in Time

Each is discussed in turn.

Connections Chained Backward in Time When a page containing URL point-
ers to other resources is downloaded, it is followed by a flurry of requests. Some
of these are due to the browser automatically requesting resources associated
with the page, others are due to a user’s clicking of a hyperlink. These are im-
plicit and explicit requests respectively. In terms of HTTP protocol specification,
no distinction is made between implicit and explicit requests.

If the requested resources are on the same server, and the web server and
browser are so configured, HTTP requests may be issued on the same, already
open TCP connection used to download the initial page. Otherwise, a new con-
nection is opened to issue the request. HTTP requests can also be sent on older
connections to the same server that are still open. This flexible connection reuse
policy is made possible by HTTP/1.1 [1], and it affords us only one temporal
constraint on the chaining of connections:

Constraint 1: For any two TCP connections A and B, if B is closed before
A is opened, A cannot be chained to B.

URLs Chained Backward in Time The second important temporal constraint
is due to the fact that a resource request cannot be made if the URL pointer to
that resource has not yet appeared in a response. For implicit requests, this sim-
ply means the browser cannot request a URL that has not yet been downloaded.
For explicit requests, it means that users cannot click on URL hyperlinks that
have not yet appeared on screen. This constraint is summed up as follows:

Constraint 2: A link traversal is impossible if the request URL appears
before the response URL. A URL Match representing such a traversal
is invalid. Two connections cannot be chained if every URL Match be-
tween them is invalid.

Since the packets of connections are interleaved on the wire, the content of
connections is interleaved in time. To determine the validity of a URL Match,
the timestamp of the request URL must be compared with the timestamp of the
response URL. In a timing diagram, HTTP events in a connection might look
like Figure 3.

Assuming a URL in the response of connection 1 matches the URL in the
request of connection 2 in the figure, we must decide whether it is temporally
possible that the request in connection 2 was initiated from 1. If not, the connec-
tions cannot be chained. To do this, URLs must be tagged with the time their
containing packet appeared in the traffic stream.

2.3 Marking Likely Adjacencies

The preceding step identifies adjacencies that are definitively impossible, and
can therefore be removed from the connection graphs. The remaining adjacen-
cies cannot be removed this easily. Since they do not violate any of the con-
straints, every remaining adjacency is a potential candidate for inclusion.

Fig. 3. Chaining Two Independent TCP Connections

To accurately isolate user session fragments, the most likely of the remaining
adjacencies must be identified. A time oriented heuristic was developed to do
this. The heuristic is based on the time between the appearance of a URL, and
the request for the resource it points to. This time is called think time, and it is
defined differently for browsers and users.

User Think Time (∆e): Length of time between a page download and a
hyperlink click (explicit request). User think time includes the browser’s
parsing and rendering time.

Browser Think Time (∆i): Length of time between a page download
and an ancillary, automatic request (implicit request). Browser think
time includes browser parsing time.

Think time corresponds exactly to the length of time between matching URLs
in distinct connections. It can be represented by a label on each edge in a TCP
connection graph. An example of this is shown in Figure 4.

Fig. 4. Think Times for Two Links between Two Connections

The figure shows two potential URL matches linking connections 1 and 2.
The first URL match implies an implicit request (an ancillary request made au-
tomatically by a browser fetching embedded content), while the second implies
an explicit request (a request resulting from a human user click). Think times
are calculated for every URL match, including matches implying link-traversals

that never occurred. The marking of likely adjacencies is based on the length of
these think times.

The time oriented heuristic is a simple set of think time limits outside which
link traversals are deemed unlikely and removed. Link traversals (represented
by URL matches) are removed according to the following rules:

Implicit URL Match (Browser Request): if think time tt > ∆i, remove.
Explicit URL Match (User Request): if think time tt > ∆e, remove.

Borrowing from the traditional sessionization techniques of web analytics [5],
the values of ∆i and ∆e are 20 seconds and four minutes respectively.

The heuristic is only applied to those connection nodes having an indegree
greater than one. That is, nodes with multiple incoming edges that imply the
node was linked-to from more than one other connection. An example is shown
in Figure 5.

Fig. 5. Removing Unlikely Adjacencies from a Multi-Indegree Node using the
Time Oriented Heuristic

Multi-indegree nodes (MINs) are an ideal target for edge removal because
they are over-represented in the adjacency graphs. Although naive chaining
produces lots of them, MINs only happen for real when requests initiated from
multiple connections are being issued on a single, already open, connection.
This is a connection reuse scenario that web browsers do not experience often.
MONs (multi-outdegree nodes), on the other hand, happen all the time. They
represent the situation where multiple connections are being initiated from the
same connection, like when a flurry of implicit requests are made for objects
embedded in a page.

Because it focuses only on MINs, the time oriented heuristic is consistently
optimistic. It leaves most out-links intact. The only out-links it removes are
those associated with MINs.

2.4 Fragment Isolation

The Link Chaining process begins as a tangled graph of naively chained con-
nections. This graph is then processed to remove the impossible and unlikely
adjacencies. The remaining graphs of connected nodes form the fragments that

the analyst will use to assemble user sessions. The fragments are isolated by
simply tracing the edges of each graph and aggregating the connection nodes.

3 Experimental Setup

Network traffic was collected passively from the inside of a live campus net-
work with a high volume (2 GB/hour) of web traffic and later written to a
database. The logging point was situated at the gateway before any NAT or
proxy so that individual host IP addresses were visible. A real attack would tap
external to this gateway, but IP address visibility was necessary here to validate
the results. All traffic features that would not normally appear in the presence
of NAT or proxy were selectively ignored for each experiment. The tap and
network under test are illustrated in Figure 6.

Fig. 6. Network Under Test

Traffic collection was performed using Snort 2.0. Snort is an open source net-
work intrusion detection system, capable of performing real-time packet sniff-
ing, analysis, and logging on IP networks [6]. In this experiment, it was used
exclusively for its packet sniffing and packet logging capabilities. The tool was
configured to break out packets into their constituent fields and write them to
a MySQL [8] database.

Figure 7 shows the three tools used to prepare the data. The first tool labels
all packets by TCP connection and removes broken or empty connections. The
second reconstructs the contents of every TCP connection while preserving the
relationship of those contents with their underlying packet features. The final
tool parses all relevant HTTP features and statistics from each TCP stream. The
results from each of these steps are written back to the database.

These tools process the raw packets to produce multiple views of the data
across all relevant protocols. They provide a convenient, granular, and rela-
tional breakdown of every traffic feature of interest. All tools were written in
C++ and made extensive use of MySQL++ [8], an object oriented API used to

Fig. 7. Three Data Preparation Steps

access the database. The API allows queries and query results to be handled as
STL Containers. Shell scripts were used to drive the compiled tools. Perl was
employed for some ancillary tools.

The TCP reassembler reconstructs TCP streams accurately despite packet re-
transmissions or out-of-order delivery. The reassembler operates on a database
of packets (as opposed to a raw log) and preserves the mapping between a
stream’s content and its constituent packets.

The HTTP Parser extracts information from the HTTP transactions in re-
assembled TCP stream files. It parses individual HTTP headers as well as the
web resources contained in the bodies of HTTP responses. For example, the
parser can rebuild sounds, images, and documents from the HTTP stream. It
can also inflate or unzip HTML web pages that have been compressed by web
servers. This is necessary for extracting the valuable hyperlinks that allow the
Link Chaining Attack to chain TCP connections together into user sessions. The
parser very much emulates the parsing functionality of a web browser.

Data preparation constituted a significant effort before the Link Chaining
Attack could be applied.

3.1 Experimental Inputs and Procedure

The experiment was performed for five sets of Port 80 traffic data. Each set was
collected in the same hour on different week days. In raw TCPdump [9] format,
the data sets were roughly 550Mb each. They each contained about 30 minutes
of traffic generated by approximately 500 active hosts. Each set contained about
750,000 packets, 25,000 TCP connections, and 100,000 HTTP messages.

Data Set Active Hosts Log Size (Mb) Time (min) Packets Connections HTTP Msgs

0 509 550 27.35 737,861 23,368 103,261
1 460 561 31.02 902,147 21,877 170,021
2 411 534 27.14 690,144 14,581 132,350
3 517 591 26.98 754,369 19,378 147,200
4 442 612 33.33 887,213 26,601 178,446

3.2 Two Versions of Fragment Isolation

Fragment isolation was performed in two ways for each data set. In the first,
fragments were isolated from all possible adjacencies. In the second, fragments
were isolated only from those adjacencies marked as likely by the heuristic. The
two tests were labelled A and B respectively.

Fragment Isolation Tests
A - All possible adjacencies
B - Adjacencies marked as likely by the heuristic

Both tests are versions of the Link Chaining Attack. Test A should be con-
sidered a naive implementation. It was conducted to establish a baseline for the
performance of the heuristic in test B.

4 Link Chaining Evaluation Metrics

For session fragments to be useful to a human analyst, they must be as large and
accurate as possible. The evaluation of the Link Chaining Attack is based on a
series of metrics that measure how the test fragments compare to actual whole
user sessions. Actual user sessions are complete sets of same-host connections,
organized by IP address. The IP address of every TCP connection is recorded in
the experiment so that actual user sessions can be isolated and easily compared
with fragments.

The measures for fragment quality are based on the degree to which ac-
tual user sessions are reconstructed by fragments. These measures consider the
number of TCP connection elements in the intersection of a fragment and an
actual user session. They are described in the following sections.

4.1 Coverage

Coverage is the degree of overlap between the connection elements in recov-
ered fragments and actual user sessions. Coverage measures the size of the
fragment in relation to the size of the actual session. For a given fragment f
and actual session s, coverage C is given by:

Coverage C =
|f ∩ s|
|s|

(1)

4.2 Accuracy

The fraction of fragment elements that have been correctly assigned. It is calcu-
lated as follows:

Accuracy A =
|f ∩ s|
|f |

(2)

Ideally, the Link Chaining attack would reproduce entire user sessions. That
is, it would produce fragments of unit coverage and accuracy. This is highly
unlikely. Instead, the goal is to consistently isolate non-trivial session fragments
of high accuracy. Regardless of their size, non-trivial fragments decrease the
user session assembly time for an analyst as long as they are accurate.

4.3 Matching Fragments to Actual Sessions

There are always more session fragments than actual user sessions. Before ap-
plying any metrics, each fragment must be matched to the user session of which
it is a part. The best matching user session is the one that shares the largest num-
ber of connection elements with the fragment. For a given fragment f , and the
set of all user sessions S, the matching session m, is given by:

Matching Session m =
{

mεS
∣∣∣|f ∩ m| = max

{
|s ∩ f |

∣∣∣sεS}}
(3)

4.4 Ambiguous Fragments

Some fragments will match multiple user sessions. Such fragments are inac-
curately chained and contain equal numbers of connections from two or more
sessions. For example, the following fragment f matches sessions s1 and s2

equally:

f =
{
1, 2, 3, 4

}
s1 =

{
1, 2, 5, 9, 13

}
s2 =

{
0, 3, 4, 12, 26, 52

}
To evaluate these fragments effectively, they must be assigned to, and compared
with, a single whole user session. There is no way to do this meaningfully. Such
an assignment would be essentially arbitrary. Fragments that are too ambigu-
ous to evaluate in the context of this experiment would be similarly confusing
to the analyst in practice. Measuring the quality of such fragments is pointless;
they are all bad. For this reason, the metrics are not applied to ambiguous frag-
ments. Instead, the fragments are counted separately, and presented as an index
of ambiguity, indicating one aspect of the performance of the LCA overall.

Ambiguity =
AmbiguousFragments

AllFragments
(4)

4.5 Trivial Fragments

By definition, fragments made up of one connection element always match one
session and have unit accuracy. Their effect is to increase the aggregate accuracy
in a meaningless way. For example, if half of all fragments are trivial, the ag-
gregate accuracy is guaranteed to be at least 0.5. This is an unnaturally inflated
score that does not represent the accuracy of non-trivial fragments. To correct
this, accuracy is not measured for trivial fragments, and aggregate results are
presented with a triviality score.

Triviality =
TrivialFragments

AllFragments
(5)

5 Results

5.1 Trivial and Ambiguous Fragments

Trivial fragments accounted for 5.25% to 9.33% of all fragments in Test A and
12.81% to 16.81% in Test B. The larger number of trivial fragments in Test B is to
be expected, as the naive method of Test A chains connections into fragments
much more readily than the discerning heuristic of Test B. It is important to
mention that some fragments were small because the user sessions themselves
were small. Specifically, 3.48% to 7.21% of actual user sessions were trivial.

Ambiguous fragments accounted for 2.25% to 4.41% of all fragments in Test
A and 1.14% to 4.02% in Test B. There was no statistically significant difference
in ambiguity between the two methods.

5.2 Coverage

The distributions of coverage scores for Tests A and B are shown in Figure 8
and 9. The coverage of the fragments isolated by the heuristic appear to be
exponentially distributed, with about 75% of them having session coverage less
than 25%. The naively isolated fragments are distributed much differently, with
generalized peaks at coverages less than and greater than 50%.

Fig. 8. Distribution of Session Coverage
of Fragments (Test A)

Fig. 9. Distribution of Session Coverage
of Fragments (Test B)

5.3 Accuracy

The distribution of fragment accuracy for Tests A and B is shown in Figures 10
and 11. The figures show clearly that the heuristic isolates fragments that are
much more accurate than those of the naive method.

Fig. 10. Distribution of Accuracy Scores,
Naive Chaining (Test A)

Fig. 11. Distribution of Accuracy Scores,
Heuristic (Test B)

6 Analysis

The previous section showed that the Link Chaining Attack was able to group
TCP connections into non-trivial fragments with moderate success. The inde-
gree heuristic proved to be far more accurate than naive chaining, although the
fragment sizes it produced were much smaller. The averages for each metric
are summarized in Table 1 below.

Test Fragment Size Coverage Accuracy Triviality Ambiguity

A. Naive 58.67 31.48 24.15 6.96 3.28
B. Heuristic 10.62 12.63 88.41 14.3 3.32

Table 1. Summary of Link Chaining Performance Averages

This research has been predicated on the notion that it is desirable for hu-
man analysts to group the contents of passively logged TCP connections into
user sessions for the purpose of surveillance. The above results are now used
to show how Link Chaining aids this process.

6.1 Modeling Sessionization Time

Without Link Chaining, or a similar technique, the largest unit of network traf-
fic that can be rebuilt from the stream automatically and reliably is the TCP
connection. After TCP connections are rebuilt, it is assumed the analyst would
sessionize them by analysing hyperlinks, content, semantics etc. Since no real
data on human sessionization time is available, the time ts, to sessionize n con-

nections is modeled as follows:

Sessionization Time Model 1 ts = tc
n(n − 1)

2
(6)

Where the time to compare one connection or fragment to another, tc, is con-
stant, and is multiplied by the maximum number of comparisons required (i.e.
the comparison of all possible connection pairs or

(
n
2

)
). This is a conservative

model. A sample sessionization of four connections is shown in Figure 12.

Fig. 12. Sample Sessionization of Four Connections

Modeling sessionization time without empirical data is admittedly clumsy.
The following relationship is used to model the best case sessionization time
achievable by an analyst, t?s , which is linear with respect to the number of con-
nections. It is impossible to argue that a human (or even a computer) can do
better than compare all connections in one pass simultaneously, so the model is
used as an ultra-optimistic benchmark.

Sessionization Time Model 2 t?s = n · tc (7)

6.2 Time Savings

The average size of fragments isolated by the heuristic in the Link Chaining
Attack was 10.62 connections. Based on this average, the number of pieces, n,
that an analyst would have to sessionize is reduced to n

10.62 . Figures 13 and 14
illustrate the effect of such a reduction on sessionization time using both models
M1 and M2. Figures 15 and 16 are plots of the original sessionization time over
the reduced time, again with both models.

The first model shows that based on the average fragment size of the experi-
ments, a human analyst working with fragments (as opposed to individual TCP
connections) would experience a speedup of greater than 100 when based on
a conservative model of analyst efficiency. When based on an optimistic model
for analyst efficiency, the LCA represents a ten-fold speedup. Since the opti-
mistic model represents the best possible case for a human analyst’s unaided
performance, it is expected that the actual speedup would be significantly bet-
ter than the indicated ten-fold speedup.

Fig. 13. Sessionization Time Functions,
Original and With LCA, Model 1

Fig. 14. Sessionization Time Functions,
Original and With LCA, Model 2

Fig. 15. Sessionization Time Speedup
(Original

LCA
), Model 1

Fig. 16. Sessionization Time Speedup
(Original

LCA
), Model 2

The amount of content visible in each fragment has a definite impact on
sessionization speed. Individual TCP connections offer only a small window
onto a user’s browsing sessions, while fragments made up of multiple connec-
tions offer a much larger window. This larger window provides the analyst
with much more semantic context, allowing him to infer user sessions more
easily than he could with individual TCP connections.

For example, some of the fragments in this experiment were rendered in a
web browser. These fragments revealed stock research pages, online education
seminars, and shopping pages. In a few cases, whole webmail sessions were
contained in one fragment and could be rendered in their entirety, including
email attachments.

7 Conclusion

By reducing the high cost of sessionizing connections manually, the Link Chain-
ing Attack makes passive external surveillance of private networks a real possi-
bility. The results suggest a minimum ten-fold speed improvement for a human
analyst with acceptable accuracy. This number may be closer to 100 when using
a reasonable model of human sessionization speed.

The fact that the indegree heuristic performed more accurately than the
naive method of fragment isolation demonstrates that web traffic contains an
exploitable relationship that is more descriptive than that marked by hyper-
links alone. Web browsing is governed by a discernible pattern of user and
browser think times that can be used — together with tracing hyperlinks — to
group connections.

The Link Chaining Attack capitalizes on navigation and time oriented heuris-
tics to sessionize fragments of user sessions. Proposed improvements include
the tuning of user and browser think time thresholds, the identification of new
impossibilities for link removal, and the discovery of impossible event sequences
spanning multiple connections. A method for assessing the likelihood of a link
based on a recursive calculation of the likelihood of its adjacent links is also
being considered.

It is believed that evolved versions of the technique will take advantage of
these small improvements to enable the uncomplicated passive external surveil-
lance of private networks — despite the anonymizing effects of NATs and HTTP
proxies.

References

1. R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. Leach, and T.
Berners Lee. Hypertext Transfer Protocol: HTTP/1.1. Internet Draft Standard RFC
2616, June 1999.

2. Clinton Wong. HTTP Pocket Reference. O’Reilly, July 30, 2000.
3. Gourley, David et al. HTTP: The Definitive Guide. O’Reilly, Cambridge, September

2002.
4. Steven M. Bellovin. ”A Technique for Counting NATed Hosts”.

www.research.att.com/ smb/papers/fnat.pdf, AT&T Labs Reseach, 2003.
5. Bettina Berendt, Bamshad Mobasher, Myra Spiliopoulou. ”Web Usage Mining for

E-Business Applications” ECML/PKDD-2002, 19 August 2002.
6. Snort IDS. http://www.snort.org/about.html.
7. MySQL. http://www.mysql.com/.
8. MySQL++. http://tangentsoft.net/mysql++/.
9. TCPdump. http://tcpdump.org/.

