
 1

Syntax-based Vulnerability Testing of Frame-based Network Protocols

Oded Tal
Department of Electrical

and Computer
Engineering, Royal
Military College of

Canada, Ontario, Canada
odedtal1@hotmail.com

Scott Knight
Department of Electrical

and Computer
Engineering, Royal
Military College of

Canada, Ontario, Canada
knight-s@rmc.ca

Tom Dean
Department of Electrical and

Computer Engineering,
Queen’s University, Ontario,

Canada
thomas.dean@ece.queensu.ca

Abstract
 Syntax-based vulnerability testing is a static black-box
testing method for protocol implementations. It involves
testing the Implementation Under Test (IUT) with a large
number of mutated Protocol Data Units (PDUs), built by
intentionally disobeying the protocol’s syntax. Security
vulnerabilities can be discovered by detecting anomalous
behaviour or crashes in the IUT (e.g. segmentation faults,
buffer, heap or stack overflows, etc.) when it attempts to
parse and use a mutated PDU. Previous research has led
to the development of a protocol testing framework and
methodology for syntax-based testing of protocols, whose
abstract syntax is based on ASN.1 (Abstract Syntax
Notation), and whose transfer syntax is based on BER or
DER (Basic or Distinguished Encoding Rules). These
protocols have syntactic structure information embedded
in the PDU. However, many protocols are not specified
using such standards and do not include embedded
syntactic structure information. Instead the byte sequence
of the data in the PDUs is specified using frame-based
PDU definitions in the protocol specification. This paper
presents research that extends the previous testing tools
and techniques to include frame-based protocols. OSPF is
such a protocol. Several well-known OSPF protocol
implementations are tested for protocol vulnerabilities.
Security vulnerabilities have been found in some
implementations.

1. Introduction

1.1. Preface

Computer network communications are subject to
attack. Manufacturers of network products need efficient
techniques to perform vulnerability testing on their
product offerings. Security vulnerabilities can reveal
themselves in many forms, such as segmentation faults, or
stack, heap or buffer overflows, which cause the
implementation of a theoretically sound protocol to fail.
This can enable an attacker to gain privileges, or to

disrupt or interfere with the functionality of the system
implementing the protocol.

Previous work in syntax-based vulnerability testing by
the PROTOS project is described in [1]. We describe in a
related work [2] a general methodology and tools for
security assessment of network protocol-implementations
whose abstract syntax is based on ASN.1 (Abstract
Syntax Notation) and whose transfer syntax is based on
the BER/DER encoding schemes (Basic or Distinguished
Encoding Rules) [3]. The testing framework is called
Protocol-tester.
 This work extends the testing framework to frame-
based protocols. Frame-based protocols are those in
which the structure of each PDU (Protocol Data Unit) is
specified by a “frame,” which explicitly defines the order
of data fields in the PDU, as well as the exact length of
each field. It involves testing the Implementation Under
Test (IUT) with a large number of mutated PDUs, which
are built by intentionally violating the protocol’s syntax.
The paper will describe the application of the
vulnerability testing technique to the OSPF (Open
Shortest Path First) protocol- a common routing protocol
for local area networks.

1.2. Objective

 The objective of this work is to extend the current work
with Protocol-tester to frame-based and mixed protocols.
A language and mechanism are required for supplying the
syntactic structural information for a frame-based
protocol such that individual PDUs can be parsed and test
cases can be generated from them by using the existing
generic Protocol-tester tools.

1.3. Paper Outline

 Section 2 provides the background for the current
work. Section 3 describes previous work in syntax testing
and in OSPF testing. The approach and the tools are
described in Section 4. Section 5 describes the test
environment and test-suite design. Section 6 describes the
results of testing OSPFv2 protocol implementations and
Section 7 concludes the paper.

 2

2. Background

2.1. Protocol Types

2.1.1. Frame-based Protocols: PDU structure is
specified by a “frame,” which explicitly defines the order
and the exact length of each data field. For example, the
checksum field of the Hello packet of the OSPF protocol
(Table 1) always starts at byte #13, and is 2-byte long.
The number of “neighbours” can vary, but the first one
always starts at byte #45, and each neighbour is 4-byte
long. Other well-known frame-based protocols are ICMP,
IP and UDP.

Table 1. The OSPF Hello packet

Byte 1 2 3 4
Version Type Packet length

Router ID
Area ID

Checksum Authentication
Type

Authentication

OSPF
Header

Authentication
Network Mask

Hello Interval Options Router
Priority

Router Dead Interval
Designated Router

Hello
Header

Backup Designated Router
Neighbour Neighbours

……

2.1.2. ASN.1 based protocols: The abstract syntax is
specified using ASN.1- a formal notation standard. An
important characteristic of ASN.1 is that the field length
is not specified, and therefore a separate transfer syntax
specification is needed, usually based on BER or DER.
BER is a transfer syntax based on octets (8-bit bytes).
DER- a subset of BER- follows the format of a TLV
triplet (Type, Length, Value). Well-known ASN.1-based
and BER/DER-encoded protocols are LDAP and SNMP.

2.1.3. Mixed protocols: A frame-based protocol, where at
least one field consists of one or more TLV triplets or LV
doublets. BGP, TCP and SSL are mixed protocols.

2.2. The OSPF Protocol

 OSPF is based on the exchange of Link State
Advertisements (LSAs) containing information on
attached neighbours, including the cost (“metric”) of
sending packets to each of them. Routers store LSAs in
their databases and use Dijkstra's Algorithm to calculate

the shortest path between source and target. In OSPFv2
[4] there are five types of OSPF packets (Table 2).

Table 2. OSPF packet types

Type name Sub-unit Comments
1

Hello

Neighbour Sent periodically
2 Database

Description
LSA header Sent when a new

neighbour join in
3 Link State

Request
(LSR)

LSA sub-
header

Sent when parts
of the link-state
database are out-
of-date.

4 Link State
Update
(LSU)

LSA Sent in response
to an LSR.

5 Link State
Acknowledg
ement

LSA header Sent in response
to an LSU.

3. Previous work

3.1. Syntax testing

 Syntax testing is a static, black-box testing technique
for protocol implementations. Beizer [5] proposes that
one specify the syntax for the protocol in a convenient
notation such as Backus-Naur Form (BNF) [6]. Mutations
are then made to the syntactic elements, and the modified
grammar is used to produce aberrant test vectors (PDUs).
Beizer suggests using an “anti-parser” to compile the
grammar to produce “structured garbage.” He also
suggests targeting one field of the input at a time at first,
and then designing test cases with combinations of input.
As in other black-box testing techniques, syntax testing
does not have a clear stopping criterion. Test engineers
have to use their experience, common sense or time/cost
constraints while designing the test-suite.

3.2. The PROTOS project

 The PROTOS project group from Oulu University,
Finland, [1] followed Beizer’s approach. They have
specified the grammar for the WAP, HTTP, LDAP and
SNMP protocols. They parse the grammar specifications
to produce a parse-tree representation of the protocol.
They then manipulate the tree and use the mutated tree to
generate thousands of malformed PDUs whose purpose is
revealing faults in the handling of input data in the IUT.
An IUT is considered to have passed the test if it has
rejected the anomalous input without exhibiting such
phenomena as crashing, hanging, or causing an illegal
access to memory.

 3

3.3. Protocol-tester

 Protocol-tester [2] is a testing environment that uses a
different approach for syntax-based vulnerability testing
of protocol implementations, by mutating the PDUs rather
than a complete expression of a specific protocol’s
grammar. The basis for PDU mutation is a general ASN.1
grammar and a general DER grammar, both written in
TXL1 [7]. A mark-up/implement architecture and various
tools enable the test engineer to specify test-case
parameters in a script-like language, and to automatically
generate test cases, each containing one or more syntax
errors, from a single, valid PDU. Test-case generation by
Protocol-tester is driven by a number of mutation rules.
The rules specify different kinds of changes to be made to
the fields of the PDU based on the type of the field.
Mutations can also involve a number of fields (e.g.
swapping elements), or structural modifications (e.g.
adding or removing sub-components of the PDU). PDU
mutation is carried out in two phases: (1) An optional
error-code is added to each ASN.1 type, in order to
specify the nature of the mutation to be performed at the
next phase. (2) Various mutations are executed on a valid
PDU, using the transformation definitions specific to each
mutation type. Each legitimate PDU can be used to
generate many test-case PDUs (in the order of thousands).
 The methodology was demonstrated on the X.509,
PCKS7 and SNMP protocols and is suitable for ASN.1
based protocols using BER or DER.

3.4. Previous work in OSPF testing

 Jou et al. [8] have used several dynamic attacks,
called Seq++, MaxAge, MaxSeq++ and LSID attack to
disrupt the operation of a target OSPF implementation.
These attacks use white-box techniques to exploit
specific perceived vulnerabilities in the protocol by using
specific exchanges of PDUs with the IUT. They do not
attempt to compromise the integrity of the router itself,
only its routing tables. Jacob [9] carried out extensive
conformance testing on an OSPFv2 package. Some of the
test-cases were based on static black-box attacks using
invalid packets. All the test cases were individually
conceived, and manually constructed. Wu et al. [10]
carried out conformance, interoperability and
performance tests on OSPF using a dynamic black-box
testing approach. Their main contribution was the
addition of passive testing to the more traditional active
testing. Passive testing focuses on protocol abnormalities
such as route oscillations, useless route advertisements
and exhausted routers, which usually appear only a long
time after the network enters a “stable” state.

1 TXL is a functional programming language, specifically designed to

handle transformation tasks.

4. Approach

4.1. Overview

 The general approach taken for this work is based on
automatic, active, static black-box testing, (Figure 1).
After using Snort [11] to gather OSPF packets from the
test environment and saving them in separate binary files,
each packet is transformed into a TXL-readable text file
by Packet-parser. Each text file is then mutated by
Protocol-tester, based on user-specified mutation
commands. This results in numerous mutated PDUs,
saved as binary files. The mutated packets are re-injected
to the test environment by Packet Injector and Monitor.
The same program also monitors the health of the target
application by sending a good Link State Request (LSR)
packet after each mutated packet, and waiting for the
target’s reply in the form of a Link State Update (LSU)
packet. When the target fails to reply, the testing is
stopped in order to investigate the cause of the failure.

Fig. 1. The general approach

4.2. Packet-parser

 Packet-parser is a C program developed as part of this
work, which can parse a frame-based/mixed protocol
PDU into its fields. It creates a text file, which serves as
the input to Protocol-tester. This intermediate file has an
ASN.1 style, so that the existing Protocol-tester tool can
perform mutations on a generic, abstract representation of
the PDU. Packet-parser parses the PDU by using syntactic
structural specifications, specified by the test engineer
using a set of structure-files. The structure-files are based
on a Protocol Description Language (PDL). Each
structure-file represents a stand-alone component of the
protocol structure. For example, the structure-file for the
Hello Header + Neighbours (Table 1) includes:
1) Meta data

� Header length: 20 bytes
� Sub-unit length: 4 bytes (for each neighbour)
� Type field number: 0 (no type field in this unit)
� Length field number: 0 (ditto)
� Number of sub-units field number: 0 (ditto).

 2) Next_files

Implementation
Under Test

OSPF reply
packets

Legitimate
OSPFpackets

Mutated & good
OSPF packets

Snort
Packet Sniffer

Test
Environment

Packet-parser Protocol-tester
Packet Injector

&
Monitor

Binary packet
files

TXL-readable
files

Mutated OSPF
packets

 4

� Number of next_files: 0 (the Hello packet ends
after the last neighbour. No other structure-files are
required for describing/parsing the rest of the
packet).

� Next_file numbers: none (ditto).
3) Number of structural tokens: 14 (see next section)
4) Structural tokens (numbers from 1-24):
 5 (Sequence) 6 (open)
 4 (4 byte integer- Network Mask)
 2 (2 byte integer- Hello Interval)
 1 (1 byte integer- Options)
 1 (1 byte integer- Router Priority)
 4 (4 byte integer- Router Dead Interval)
 4 (4 byte integer- Designated router)
 4 (4 byte integer- Backup Designated Router)
 7 (close)
 9 (Set of)
 4 (4 byte integer- Neighbour)
 7 (close)
 12 (end of structure-file)
 The Hello structure-file is a numerically encoded file,
containing the above numbers in a specific order: 14H, 4,
0, 0, 0, 0, E, 5, 6, 4, 2, 1, 1, 4, 4, 4, 7, 9, 4, 7, C.
 It is one of 13 structure-files, which describe OSPF
packets to Packet-parser. Packet-parser parses a binary
OSPF packet by consecutively reading bytes from the
packet, according to the information in the relevant
structure-file. It starts with the first structure-file (OSPF
header) and then opens, uses and closes other structure-
files recursively, as required.
 The current numerically encoded structure files are
created manually. Currently a friendlier, human-readable
language is being developed to specify the packet
structure of the protocol to be tested.
 Packet-parser has been used for parsing frame-based
protocols (OSPF, RIP) and mixed protocols (BGP, TCP).

4.3. Packet Injector and Monitor

 Packet Injector and Monitor is a C program used to
inject IP packets onto a network and monitor the health of
the target IUT. The program uses the set of mutated test
PDUs produced by Protocol-tester. It iterates over the set
by reading a mutated packet, calculating and updating its
OSPF header checksum and length, and adding an IP
header. It then injects the packet onto the network. The
monitor part of the tool then injects a good Link State
Request (LSR) packet in order to trigger a response from
the target IUT. The injection of the next mutated packet is
carried out immediately after receiving a valid Link State
Update packet from the target. If the target does not
respond, the program halts and the test packet causing the
failure in the IUT is investigated.

5. Conducting the tests

5.1. Test Environment

 Figure 2 describes the network topology of the test
environment. There were three OSPF IUTs involved in
the testing: Zebra, Windows 2000 Advanced Server, and
Cisco IOS. Workstations CSL3 and CSL7 are physical
computers running Linux Red Hat 8.0 [12] and VMware
3.2 [13]. All other machines are virtual VMware
machines on the respective Linux host workstations.
 The Zebra 0.93 OSPF daemon [14] was tested on three
platforms: Red Hat 8.0 Linux on a real physical machine
and on a virtual machine and OpenBSD 3.3 [15] on a
virtual machine.
 The Windows 2000 Advanced Server [16] was tested
on a virtual machine. A Cisco 2621 Router running IOS
12.0(7)T was also tested. A Windows 2000 virtual
machine was used to run Packet Injector and Monitor.

5.2. Test-suite Design

 Fifteen test-suites, each containing between 3,000 –
4,000 mutated packets, were produced for each IUT by
mutating all five OSPF packet types, using three mutation
strategies:
1. Replacement: Replacing one field at a time with

boundary and mid-way values, i.e. 00, 7F, 80, FF,
0000, 7FFF, 8001, FFFF, 00000000, 7FFFFFFF,
80000001, FFFFFFFF, 0000000000000000 and
FFFFFFFFFFFFFFFF.

2. Removal: Removing one field at a time, and then
removing pairs of fields, one pair at a time.

3. Permutation: Permutating pairs of fields within
each SEQUENCE and SET.

Fig. 2. Test environment topology

Area 0

Linux02

Linux03

Linux04
Windows

2000

OpenBSD

Windows
Advanced

Server

Linux06

Linux07

Linux05

CSL3
Linux

CSL7
Linux

Cisco 2621 Router

Area 3

Area 1 Area 2

 5

6. Results

6.1. General

 Table 3 summarizes the results of attacking OSPF
implementations on 5 different targets. It shows for each
test-suite the OSPF type of the original, unmutated PDU,
the mutation strategies and the results. A “+” sign means
that the OSPF implementation crashed at least once.

6.2. Test Results for Zebra OSPF Daemon

6.2.1. Overview. The OSPF daemon crashed at least once
on 10 out of 15 test-suites on Linux and VMware/Linux,
and on 8 out of 15 test-suites on OpenBSD. After each
crash the operating system continued to function
normally, however the OSPF daemon had to be reset to
continue with testing. Therefore, at the very least the
systems seem to be vulnerable to Denial of Service (DoS)
attacks.
 The test cases were run against each IUT a number of
times. It is interesting to note that the crashing behaviour
of the OSPF daemon on the targets was inconsistent; the
same test cases sometimes caused the target to crash and
at other times they did not. This behaviour was
investigated by using debugging tools and examining the
IUT source code. The observed crashes were caused by
three security vulnerabilities.

Table 3. Test results

OSPF daemon crashes*
Zebra

OSPF daemon
on

Original
packet
type

Mutation
strategy

1 2 3

Win Cis

Replace + + + +
Remove

Hello

Permutate + + +
Replace + + +
Remove

Database
Description

Permutate + + +
Replace + +
Remove

Link State
Request

Permutate + + +
Replace + + + +
Remove +

Link State
Update

Permutate + + +
Replace + +
Remove

Link State
Ack.

Permutate + +
Successful
test-suites

15 test-
suites

10 10 8 2 0

* 1: VMware 3.2 + Red Hat 8.0 Linux
 2: Red Hat 8.0 Linux
 3: VMware 3.2 + OpenBSD 3.3
 Win: Windows 2000 Advanced Server
 Cis: Cisco 2621 Router, IOS 12.0(7)T

6.2.2. A security vulnerability in the OSPF checksum
routine. The OSPF checksum routine (in_cksum in
checksum.c) does not compare the length field in the
OSPF header to the length field in the IP header. When
the length field in the mutated OSPF header is larger than
the actual packet size, the routine can crash due to a
segmentation fault. This occurs because the packet is
stored in a buffer in the heap. As the checksum algorithm
continues to read past the actual end of the packet due to
the erroneous length field it can end up reading past the
end of the heap into unauthorized memory space.

6.2.3. A security vulnerability in the LSA checksum
routine. The LSA checksum routine (ospf_lsa_checksum
in ospf_lsa.c) does not verify the validity of the length
field in the LSA header. When the length field in the
mutated LSA header is larger than the actual packet size,
the routine can crash due to a segmentation fault. This can
happen only with LSU packets. The causes of this error
are very similar to those in section 6.2.2 above.

6.2.4. A security vulnerability in the OSPF daemon’s
main routine. The implementation crashed because of a
segmentation fault caused while calling the dynamic
memory allocation function calloc(). This class of error is
often due to heap overflow. It can obviously be exploited
by a hacker for DoS attack. However in some cases this
class of error can be exploited with more dangerous
results such as the execution of arbitrary malicious code.

6.3. Test Results for Windows 2000 Advanced
Server
6.3.1. Overview. The OSPF daemon crashed at least once
on 2 out of 15 test-suites. Three types of crashes were
observed:

1. Temporary crash: the Operating System (OS)
continued to function normally, and the OSPF
daemon started working again after about 10
minutes.

2. Semi-permanent crash: the OS continued to
function normally. Stopping and restarting the OSPF
daemon restored it to service.

3. Permanent crash: the OS unexpectedly terminated
several services, including System Event
Notification, Routing and Remote Access,
Removable Storage, Network Connections, Internet
Authentication and COM + Event System. It had to
be rebooted.

 6

 Again the test cases were run against the IUT a number
of times. The crashing behaviour of the OSPF daemon
was inconsistent. The same test-suite sometimes caused it
to crash at different mutated packets, to crash differently,
or not to crash at all. This suggests that the vulnerability is
related to the heap and is sensitive to the location of the
packet in the heap.

6.3.2. Causes for crashing. The root causes for the
crashes have not been isolated since the source code is not
available, and the vendor may not welcome reverse
engineering of the mechanism in question. Further
investigation will involve additional black-box syntax-
based testing to identify recurring fault scenarios and then
working with the vendor to identify the cause.

6.4. Test results for the Cisco Router

 The OSPF implementation in Cisco 2621 Router did
not crash. Therefore, it was also tested by manually
mutated packets, based on additional mutation strategies,
including:
1. Structure-level mutations, e.g. Router LSAs,

where the number of Links is smaller or larger than
specified in the Router header, including zero.

2. Contents-level mutations, e.g. LSA sequence
number is 7FFFFFFF (MaxSeq# attack).

3. Stress testing: sending maximum length packets
(64k bytes) for two hours.

 The implementation did not crash as a result of any of
the test scenarios.

7. Conclusions

 The paper describes a vulnerability testing technique
for frame-based network communication protocols. The
vulnerability-testing framework was used to test several
commercial implementations of the OSPF protocol.
 The Zebra 0.93 OSPF daemon was shown to be
vulnerable to Denial of Service attacks (at least) due to
bugs in its OSPF checksum function, LSA checksum
function and the main routine.
 The OSPF daemon in Windows 2000 Advances Server
was also shown to be vulnerable to Denial of Service
attacks.
 No vulnerabilities were discovered in the Cisco 2621
(IOS 12.0) OSPF daemon.
 The test trials of these OSPF products yielded some
interesting results but they are more interesting as a proof-
of-concept for the technique.
 This work is novel in that it is a static black-box
technique specifically suited to security vulnerability
testing. A vendor or system integrator using the technique
does not need to know the internal structure of the
network products being tested. The technique is easily
portable to new protocols.

 Future work includes improving the protocol
description language to allow PDU structural information
to be more easily specified by a test engineer. There is
also important work that can be done in identifying
common semantic relationships between syntactic
elements of a protocol. These tend to be captured in the
textual descriptions in the protocol specifications.
Identifying common relationships and can be useful in
identifying more complex testing strategies that can be
used to improve the current mutation command libraries.

References

1. R. Kaksonen, M. Laasko and A. Takanen. (2000).

“Vulnerability analysis of software through syntax testing”.
University of Oulu, Finland.
Available:
http://www.ee.oulu.fi/research/ouspg/protos/analysis/WP20
00-robustness/index.html.

2. Y. Turcotte, O. Tal, S. Knight and T. Dean, “Universal
methodology and tools for syntax-based vulnerability
testing of protocol implementations”. Accepted for
publication in MILCOM 2004.

3. O. Dubuisson, ASN.1 Communication between
Heterogeneous Systems. Academic Press, San Diego, 2001.

4. J. Moy, “OSPF Version 2, RFC 2328” (1988, April).
Available: http://www.faqs.org/rfcs/rfc2328.html.

5. B. Beizer, Software Testing Techniques, 2nd Edition. Van
Nostrand Reinhold, New York, 1990.

6. P. Naur, (ed.), “Revised report on the algorithmic language
ALGOL 60”, Communications of the ACM, vol. 3, May
1960, pp. 299-314.

7. J. Cordy. (2000). “The TXL programming language v.10”.
Available: http://www.txl.ca/nabouttxl.html.

8. Y.F. Jou, F. Gong, C. Sargor, X. Wu, S.F. Wu, H.C. Chang
and F. Wang, “Design and implementation of a scalable
intrusion detection system for the protection of network
infrastructure,” in Proc. DARPA Information Survivability
Conference and Exposition, 2000.

9. D. Jacob, “Testing intra-domain routing in a network
simulator”. Universität des Saarlandes, Germany, Diploma
Thesis, Jan. 2002.

10. J. Wu, Y. Zhao and X. Yin, “From active to passive:
Progress in testing of Internet protocols”, in Proc. 21st
International Conference on Formal Techniques for
Networked and Distributed Systems, 2001.

11. Snort. Available: http://www.snort.org/.
12. Red Hat 8.0. (2002, Sep.). Available:

http://www.redhat.com/about/presscenter/2002/press_eight
oh.html.

13. VMware 3.2. Available:
http://www.vmware.com/support/ws3/doc/releasenotes_ws
32.html.

14. Zebra 0.93. Available: http://www.zebra.org/.
15. OpenBSD 3.3 (2003, May).

Available: http://www.openbsd.org/33.html.
16. Windows 2000 Advanced Server. Available:

http://www.microsoft.com/windows2000/advancedse
rver/default.as.

