SECURITY VULNERABILITIES ASSESSMENT OF THE X.509 PROTOCOL BY SYNTAX-BASED

TESTING
Yves Turcotte Oded Tal and Scott Knight Thomas Dean
National Defence Headquarters and Royal Military College and Queen’s University

Ottawa, Canada

ABSTRACT (AbstractID # 904)

This paper describes a methodology for syntax-based
vulnerability testing of computer-network protocol
implementations, by mutating the protocol data units
(PDUs) transmitted to the target implementation.

The implementers of a protocol are under a number of
different constraints: time, budget, throughput and
memory footprint-size. Adequate attention to secure
handling of data structures in a PDU can give way to
other pressures. The implementation may be designed to
meet conformance-testing cases but can have open
vulnerabilities to more obscure cases that might not even
be possible during normal operation of the protocol. The
vulnerabilities can lead to a compromise of the target’s
security, e.g. buffer overflow. The vulnerability testing
approach described in this paper manipulates the
grammar of the targeted network protocol to generate a
large number of mutated test-cases that can be used to
identify security vulnerabilities.

This work builds on that of Beizer and the PROTOS
research group who propose a functional method for
assessing protocol implementation security. It adopts a
more general approach in its modelling of protocols in
order to take advantage of similarities between protocol
data structures and to better utilise common abstract
syntax constructs (in this case ASN.1), and common
transfer syntaxes. It focuses on the mutation of a
representation of PDU syntax that is derived from actual
protocol PDUs “by example” rather than by specifying
and mutating the grammar for the protocol itself. This
results in the production of a more universal testing tool
applicable to many ASN.I-based protocols with little or
no modification. The methodology and tools developed as
part of this work were used with success to test a number
of network protocols, including a commercial product
using ASN. I-specified X.509 public key certificates.

INTRODUCTION

Preface

Conformance test-suites are often developed to ensure that
the implementation of a computer-network protocol
responds correctly to all known protocol messages and
their variations. While protocol specifications and
protocol conformance test-suites ensure, to a certain
extent, compatibility of interfaces between products, they

Kingston, Canada

Kingston, Canada

do not, by themselves, ensure the security of the protocol-
implementation.

The implementers of the protocol are under a number of
different constraints during the development of their
software. The software must be built on time and on
budget; it might have to live within a limited memory
footprint and be expected to meet demanding throughput
performance requirements. Adequate attention to secure
handling of data constructions in a Protocol Data Unit
(PDU) might give way to other pressures. The
implementation may be designed to meet the conformance
test-cases but can have open vulnerabilities to more
obscure cases, which might not even be possible during
normal protocol operation.

Security vulnerabilities can reveal themselves in many
forms, such as stack or buffer overflows, which cause the
implementation of a theoretically sound protocol to fail.
This can enable an attacker to gain privileges or to
interfere with the functionality of the system
implementing the protocol. The presence of such security
vulnerabilities can have serious consequences.

Kaksonen et al. [3] describe a functional method for
assessing protocol-implementation security based on
protocol syntax, which has been used by the PROTOS
research group at Oulu University, Finland. The method
extends Beizer’'s [1] syntax testing principles and
produces a large set of carefully crafted protocol data units
(PDUs) that are used to test for security vulnerabilities in
network protocol-implementations. The security of a
protocol-implementation is assessed based on its ability to
correctly handle or reject these malformed PDUs and not
to reveal security vulnerabilities.

The work described in this paper uses an approach similar
to that of PROTOS by testing for security vulnerabilities
using malformed PDUs. In this work however, a more
general framework and methodology is proposed for the
generation of the test PDUs. The new framework can be
easily adapted to address a broad range of network
protocols.

1of7

Objective

The objective of this work is to provide a more general
approach to the modelling of protocols, and to syntax-
based test-vector generation. The new approach takes
advantage of similarities between protocol data structures
in order to better utilise common abstract syntax
constructs, and common standards for encoding data
structures for transmission on a network. The immediate
target protocols for the framework are those using ASN.1
[4] to specify their protocol data units. For example,
cryptographic keys and user identification information are
held in X.509 [6] certificates in a number of PKI (Public
Key Infrastructures) communication protocols used to
manage security services. The X.509 specification is
written using ASN.1. Although the initial focus was on
these standards, this work has resulted in the development
of a more universal testing-framework, which is
applicable without modification to ASN.1-based
protocols, and is extensible for encoding rules other than
BER or DER [4], which are standard encoding rules
specified for ASN.1.

BACKGROUND

Definitions
A protocol is an agreed-upon format for transmitting data
messages between two devices.

An abstract syntax describes the structure of the data,
without its semantics, and is not tied to any programming
language or implementation platform. ASN.1 (Abstract
Syntax Notation) is an international standard and a formal
notation for describing an abstract syntax, which is used in
many protocol specifications.

A concrete syntax is the representation, in a given
programming language, in a given protocol-
implementation, of the data structure. That is, it is the way
in which the internal data structures of a specific
commercial product are organized.

A transfer syntax is an agreed-upon bit sequence
convention to describe the data structures to be transferred
from one protocol-implementation to another. BER (Basic
Encoding Rules) and DER (Distinguished Encoding
Rules), which is a subset of BER, are two types of transfer
syntaxes associated with ASN.1 for interchanging octets
(8-bit bytes) of data. BER and DER follow the format of a
Type Length Value triplet (TLV). The Type field is used
to encode one of the ASN.l types (e.g. BOOLEAN,
INTEGER, SEQUENCE). The Length field represents the
number of octets of the Value field. Finally, the Value
field may be a series of octets providing a concrete

representation of a value of the basic types, or in the case
of constructed types, more TLV triplets.

Syntax testing

Beizer [1] proposes that one formally specify the syntax
(grammar) for the protocol language in a convenient
notation, such as BNF (Backus-Naur Form). Mutations are
then made to the syntactic elements, and the modified
grammar is used to produce aberrant test-vectors. Beizer
suggests that, because of the large number of possible
syntax mutations, automation should play a key role. He
also suggests the use of an “anti-parser” in order to
compile the BNF grammar to produce “structured
garbage.” From the protocol syntax, the various fields and
field delimiters are identified. Beizer suggests targeting
only one field of the input at a time at first, and then to
design test-cases with combinations of input.

In the context of syntax testing, two areas can be targeted:

1. Syntax testing of the concrete syntax used by the IUT
(Implementation Under Test) can be done by
modifying the structure and content of the PDU. This
can be done even if the specific concrete syntax used
is not known. Syntax testing at this level probes the
ability of the IUT to handle malformed PDUs that
were correctly decoded.

2. Syntax testing of the transfer syntax probes the
robustness of the IUT encoding/ decoding modules
when subjected to incorrectly or unusually encoded
PDUs.

The PROTOS approach

The PROTOS work [3] follows the Beizer approach. They
have specified the grammar for a number of protocols:
WAP, HTTP, LDAP and SNMP. They parsed the
grammar specifications to produce a parse-tree
representation of the protocol language. They then
manipulated the tree and useD the mutated tree to generate
thousands of test-cases.

An interesting aspect of the PROTOS approach is that it is
directed toward black-box security vulnerability testing
and not traditional software quality assurance. The testing
technique is not concerned with whether or not the test
PDU is processed correctly (as would quality assurance
testing). The approach generates thousands of malformed
PDUs whose purpose is revealing faults in the handling of
input data in the IUT. An IUT is considered to have
passed the test if it has rejected the anomalous input
without exhibiting such phenomena as crashing, hanging
(denial of service), or causing an illegal access to memory.
While PROTOS achieved a good level of test execution
automation and a certain level of test design automation
through scripting, a drawback of this approach is that its

20f7

first stage, developing a machine-processable specification
of the protocol grammar, is both protocol-specific and
labor-intensive.

APPROACH

Overview

The fundamental approach of this work, as depicted in
Figure 1, is based on two ideas: 1) General ASN.1 and
DER grammars (protocol definitions), which include
possible mutations, and 2) Using a mark-up/implement
architecture in order to make PDU mutating more
efficient.

ASN and DER
Anomalies ASN.1
(Parameters) Protocol Def

Good Case e TXL
PDU in - TXL ur,m Implement
TXL Rep. i | Apply Markup affabeg “F ASN Markup

(“ErrASN”)
ASN.1 DER
Protocol Def Protocol De
. TXL
sytog i - Implement
Ib.: o “§ DERMarkup

(“ErrDER”)

Bad PDUs
In TXL
Representation

y

Figure 1. The general approach

Using a valid PDU (collected from legitimate traffic with
the IUT) and a general ASN.1 grammar, a parse-tree is
obtained and mutated at the abstract syntax level with the
help of a transformation tool. Then each mutant PDU can
also be mutated when it is encoded at the transfer syntax
level based on a general DER grammar. The main tool
supporting this approach is TXL, which is described in the
next section.

Test-case generation by Protocol-tester is driven by a
number of testing strategies specified by PDU mutation
rules. The rules specify different kinds of changes to be
made to the fields of the PDU based on the type of the
field. Mutations can also involve a number of fields (e.g.
swapping elements), or structural modifications (e.g.
adding or removing sub-components of the PDU). PDU
mutation is carried out in two phases:

1. In the first phase an optional error-code is added to
each ASN.1 type, in order to specify the nature of

the mutation to be performed at the next phase on
any given ASN.1 field.

2. In the second phase various mutations are executed
on a valid PDU, using the TXL transformation
definitions specific to each mutation type.

Libraries of testing strategy rules can be applied to each
PDU. Therefore, each legitimate example PDU can be
used to generate many test-case PDUs.

TXL

TXL is a functional programming language [2]
specifically designed to handle transformation tasks. The
basic paradigm of TXL involves transforming input to
output using a set of transformation rules that describe by
example how different parts of the input are to be changed
into output. In this work TXL is used to specify a general
ASN.1 grammar used to parse valid PDUs. It is also used
in the formulation of transformation rules to describe how
to mutate a PDU.

A Simplified Example

Throughout this section the description of the
vulnerability-testing framework will be placed in the
context of a simple imaginary protocol called the Housing
Data Protocol (HDP). HDP is used to communicate
information about the residents of the streets in a city, one
street at a time. For every street, the required data is
{house_number and family_name} of its residents. The
ASN.1 specification for an HDP packet might look like
this:

HDP_Packet ::= SEQUENCE {
number_of_houses
houses

INTEGER
Houses}
Houses ::= SEQUENCE OF House
House :: = SEQUENCE {
house_number
family_name

INTEGER
VisibleString}

Protocol-implementations, which may come from
different vendors, might exchange HDP packets that have
been encoded using DER as the transfer syntax. For
example, let us assume that a specific HDP packet
contains the data for only two houses: no. 200- Smith, and
no. 300- Stevens. The DER encoding scheme for this
packet {2, {{200, Smith} {300, Stevens}}} is represented
by nested TLV structures. For example the TLV
structures representing the {300, Stevens} portion of the
packet would be represented by the following octet
encoding:

3of7

T1 | L1 Vi

T2 |L2 V2 |[T3 |L3 |V3

16 |13 (2 [2 |300 |26 |7 | Stevens

These structures would be embedded as the value field of
a more complex structure comprising the whole packet.
The type fields represent data types: SEQUENCE or
SEQUENCE OF (16); INTEGER (2) and STRING (26).
The length fields represent the length in bytes of the
corresponding TLV triplet data field. The value fields
represent the data itself. For example, in the last TLV
triplet, (T3,L3,V3), the type field is 26 since the family
name is a string; the length field is 7, because the name
Stevens is a string of 7 characters, and the value field is
the name itself, Stevens. Also note, that L2 is 2 because
the second house number, 300, is represented by 2 octets.

Pre-processing
The first step in the generation of a set of mutated test

PDUs begins with a well-formed legitimate test PDU like
the one above. The PDU might be collected from live
legitimate traffic from the IUT. The PDU in its binary
format and the general ASN.1 grammar are fed into an
ASN.1 Parser, written in Java. The output file of this
program is a TXL-readable presentation of the original
PDU. The output of this tool looks like a high-level
ASN.1 representation of the packet. Note that the
production of this representation does not require a
grammar specification for the protocol under test. Next, a
TXL program introduces error mark-up tokens into the
PDU’s structure. Each token is identified by an asterisk
(*) followed by a unique field-number. These tokens
identify sites were error codes may be introduced in the
following steps. For the HDP example above, the output
file of ASN.1 Parser complete with the mark-up tokens (in
bold) would be as follows:

ASN.1 mark-up and mark-up implementation
Suppose that for a particular test-suite the testing strategy

calls for the mutation of the original PDU by removing
one of the INT fields at the abstract syntax level. The
TXL Apply Markup program is used to add this mark-up
to the PDU. For example, a markup, ErrASN remove,
might be applied to field 5 of the HDP packet example.

The TXL Implement ASN Markup program will then be
used to implement this mutation. In the example, the

- mutation on field number 5 will produce a mutated PDU,

in which the first house number (200) is missing. The
marked-up PDU for this mutation command would be:

The PDU with one mutation command

SEQUENCE*1 {
INT*2
SEQUENCE*3 {
SEQUENCE*4 {
INT*5 ErrASN remove 200
VisibleString*6 “Smith”}
SEQUENCE*7 {
INT*8 300
VisibleString*9 “Stevens™}

}

After implementing the command the field is removed in
the resulting PDU.

Implementing the mutation command

The marked-up version of the PDU

SEQUENCE*] {
INT*2
SEQUENCE *3 {
SEQUENCE *4 {
VisibleString*6 “Smith”}
SEQUENCE*7 {
INT*8 300
VisibleString*9 “Stevens”}

SEQUENCE*1 {
INT*2 2
SEQUENCE*3 {
SEQUENCE*4 {
INT*5 200
VisibleString*6 “Smith”}
SEQUENCE*7 {
INT*8 300
VisibleString*9 “Stevens™}

}

i

Other possible mutations at the this level include, among
others: changing field order, changing the order of larger
composite data structures, including 3 houses in the
message without changing the number_of houses,
including illegal characters in the family name,
duplicating the same house number and family name, and
many combinations of such mutations. All of these
mutations are modifications of the PDU at the abstract
syntax level.

4 of 7

DER mark-up and mark-up implementation

The framework can also generate mutated test PDUs by
making modifications at the transfer syntax level. These
mutations effect the encoding of packet fields. Suppose
that for a particular test-suite the testing strategy calls for
the mutation of the original PDU by changing the value of
a TLV length field such that it will not be compatible with
the corresponding value field. For the HDP example
above consider a mutation of the first length field, L1 (the
sequence holding the data {300, stevens}). To do this an
additional error mark-up, ErrDER increase_length, can
be added to field no.7. Now the marked-up PDU (mark-
ups for: remove field no. 5, and increase the length of field
no.7) would look like this:

The PDU with two mutation commands

SEQUENCE*] {
INT*2
SEQUENCE*3 {
SEQUENCE*4 {
INT*5 ErrASN remove 200
VisibleString*6 “Smith”}
SEQUENCE*7 ErrDER Increase_length {
INT*8 300
VisibleString*9 “Stevens”}

}

Again, after processing the command field no. 5 is
removed in the resulting PDU. Note that the TXL
Implement ASN Markup tool has performed the high-
level, abstract syntax modifications required to perform
the removal of field no. 5 as before. Note also that the
EnDER mark-up remains. The encoding level
modifications are performed at the next stage of
processing.

Implementing the ASN mutation command

SEQUENCE*] {
INT*2
SEQUENCE*3 {
SEQUENCE*4 {
VisibleString*6 “Smith”}
SEQUENCE*7 ErrDER Increase_length {
INT*8 300
VisibleString*9 “Stevens”}

1

Using TXL DER Grammar a tool called the TXL DER
Encoder is now used to transform the test PDU from
ASN.1 format into DER format, including implementing
mark-ups. At this stage the program mutates the PDU at

the DER level, by increasing the value of the first Length

field by one. The output of this program is a mutated PDU
in TXL DER format:

T1 L1 Vi

T2 |L2 | V2 [T3 [L3 |V3

16 14 (2 (2 (300 |26 |7 Stevens

Note, in the small portion of the PDU that was examined
above, the value of byte L1 has been increased in the DER
encoding from its correct value, 13, to 14. If the whole
PDU were to be examined it could also be seen that the
encoding of field no. 5 was missing. Possible mutations at
the DER encoding level include, among others: using
invalid tags, using negative numbers for the house number
and for the numberOfHouses, and many combinations of
such mutations. All of these mutations are modifications
of the PDU at the transfer syntax level.

Post-processing
Finally, the mutated PDU is transformed by a Post-

Processing Parser, written in Java, into its binary format,
which can now be injected into the implementation of the
HDP protocol under test. An example of injection might
be to package the binary stream in a network packet and
send it to the HDP application for processing. A
successful test packet will cause the HDP application to
fail.

TEST PROCEDURE

Conducting the syntax testing of a protocol
implementation can be broken down into several steps, as
illustrated at Figure 2. Note that the bold bordered box
labeled Transformation contains the components from
figure 1, which have been described in the example above.

Step no. 1: specifying the required mutations

The test engineer creates a script that describes the tests to
be performed. These are selected from a library of PDU
mutation instructions or created for the specific [UT. TXL
ScriptMaker interprets the test engineer’s mutation
instructions and converts them into a set of operations
used to generate marked-up PDUs. Typical ScriptMaker
commands consist of an ASN.1 target type, an error level
(ASN.1 or DER levels), a mutation command and its
associated parameter. For example:

1. INT ErrASN {remove} — remove INT fields at the
application level (abstract syntax).

2. INT ExDER ({increase_Length} — increase the length
field at the DER encoding level (transfer syntax).

Sof7

For example, the first command when run by ScriptMaker
would produce instructions to the TXL Apply Markup
program to produce a set of new marked-up PDUs such
that for each new PDU a different INT field of the original
valid PDU was removed. It can be seen that each
ScriptMaker command can generate many marked-up
PDUs. This is especially true of commands that
manipulate multiple fields such as changing field
orderings. These commands can have a large number of
permutations. In addition to the sets of test-case PDUs that
are generated by a single ScriptMaker command, there are
also commands that let the test engineer combine two or
more commands and generate PDUs with multiple
mutations [7]. These combined commands are used with
caution to prevent an explosion in the number of test-

cases.
Script ASN and DER
@__)[Genemnw f'm“,’a"?.i';%
(TXL Seript Maker)

DER valid

PDU Pre-Processing DU e
0101010010010010] (ASN.1 Parser in Java) in TXL Rep.
\/ T

Transformation

y Command Line Injector
. Binary
>l [e |
” d PD! Network Injector
{PDU encoder in Java) o;':numlgsl y
_/—

PKCS7 Msg. Injector

Figure 2. Test procedure

Step no. 2: PDU capture and transformation

A good PDU is captured from legitimate traffic with the
IUT. The process described in the simplified example
above is used to generate many mutated test-case PDUS.
The result is a test-suite of many PDUs in their binary
format.

Step no. 3: Injecting and monitoring

The last step test-case injection. Different injectors are
used depending on the nature of the IUT. The test injector
design can take different forms but always aims at
automating the process of sending malformed PDUs to a
potentially vulnerable identified interface. For instance,
the Network Injector uses the targeted communication
protocol to simulate a client-server exchange with a
malformed PDU, in the same manner in which a real
exchange would take place. Similarly, an injector for some

applications is simply a script file containing command
lines that execute the IUT application with the various
malformed test-case PDUs as parameters.

In association with the injection of each test-case into the
IUT there must also be a mechanism for determining if the
injection of that test-case caused an error in the TUT. In
some cases a diagnostic tool can be used. In other cases
some normal, valid activity is requested of the IUT after
the injection of each test-case as part of the automated
testing process. Logs from the test injector and the
monitoring tools are used when as error is detected to
identify the PDU that caused the error and the nature of
the IUT failure.

MUTATION APPRAOCHES

Brute Force Approach - Application Anomalies

This approach focuses on how the IUT uses the PDU,
after it has been DER-decoded, and systematically tests all
the ASN.1 types, regardless of how they are actually used
for the particular IUT. It relies mainly on the analysis of
the definitions of ASN.1 types. A direct benefit from this
approach is a wide coverage of all simple and structured
fields of the protocol under test while still providing a
readily functional test-suite relevant to any ASN.1 derived
protocol. Each ASN.1 type was examined and test vectors
were designed to address a wide range of syntax errors,
e.g. changing the order of its elements, value overflow,
etc.

Brute Force Approach - Encoding Anomalies

This approach is also generic in nature (i.e. application-
independent) and focuses on anomalies and unusual
options of the DER transfer syntax. The resulting test-
suite is also applicable to any ASN.1 derived protocol
using this transfer syntax. It aims at discovering
vulnerabilities with security implications at the DER
decoder levels of the IUT. First, examining the TLV
structure of the transfer syntax, all type and length fields
encoding options of the DER were explored and encoding
anomalies were introduced. Then various encoding
options of ASN.1 types were explored in order to generate
errors in the type, length and value fields, such as a length
field, which does not correspond to the length of the value
field.

Semantic Augmentation Approach

This approach is based on using some knowledge of the
protocol’s semantics in order to design test-cases. In
general, more test-cases can be defined, depending on the
effort placed in the semantic analysis of the protocol and
on the purpose and the relationship between various data
elements of the PDU. This approach is complementary to

60of7

the first two. As tests using this approach are partially
semantically driven, and not purely syntax driven, these
test strategies must be custom-tailored every time a new
protocol is tested for security vulnerabilities. Many field
value permutations are covered by the brute force
approaches; in this approach field dependencies, protocol
options and field particularities are of interest.

TEST RESULTS

Two of the products tested using this approach have been:

l. A certificate manager application for X.509
certificates.

2. Two versions of a commercial PKI product using
X.509 certificates (the current release and a previous
release).

The test framework did not detect any vulnerabilities in
the certificate manager application, but did produce some
interesting results for the PKI products.

The framework produced 29,136 test-cases for X.509
Certificates. The test-case injector is a C++ program,
based on the PKI's API toolkit, which can be used by an
application programmer to communicate with the PKIL
Potential vulnerabilities in the earlier version of the
product were discovered. The injector caused failures on
several test-cases. For both versions of the product test-
cases in a third category, although properly handled, took
more than 20 minutes to process.

Establishing the severity of the potential failures was not
part of this work. However, even without further
investigation these failures present denial of service attack
vulnerabilities. They may however be indications of more
serious security vulnerabilities. These results demonstrate
the value of the framework and the testing approach in
uncovering security vulnerabilities in protocols defined
using ASN.1 and using DER as the transfer syntax.

CONCLUSION

The efficiency of protocol testing for wvulnerabilities
through syntax testing has clearly demonstrated its
strength in the past through the work of PROTOS. This
work goes further by introducing a complementary
approach to the problem of protocol testing such that the
following advantages are achieved:

1. It adopts a more general approach in its modelling
of protocols in order to take advantages of
similarities between protocol data structures and to
better utilise common abstract syntax constructs,
and common transfer syntaxes. This resulted in the
production of a more universal testing tool
applicable to many ASN.l-based protocols with

7 of 7

little or no modification and extensible for other
encoding rules than DER.

It focuses on the mutation of a representation of
PDU syntax, derived from actual PDUs “by
example” rather than by specifying and mutating the
protocol’s grammar. By careful choice of example
PDUs, to cover various PDU options, the
thoroughness of syntax mutation achieved is
believed to be as good as what could be obtained
through straight mutation of the grammar.

The approach does not necessitate the significant
conversion process of an ASN.1 specification into a
machine-readable grammar each time a new
protocol is tested. Instead, the framework translates
the initial example PDU into a concrete syntax in
TXL, which is very similar to the original
representation in ASN. 1.

The two-phase approach to the error transformation
process makes it easy to support more sophisticated
testing strategies. The two-phases: applications of
error mark-ups, and the implementation of error
mark-ups, are cleanly separated. The
implementations of the mark-ups tend to be more
primitive. A broad range of more sophisticated
testing strategies can be implemented by the
specification of a group of more primitive mark-ups.

REFERENCES

B. Beizer, Software Testing Techniques, 2nd
Edition, Van Nostrand Reinhold, New York, 1990.
J. Cordy, The TXL Programming Language ver. 10,
http://www.txl.ca/nabouttx].html, 2000.

Kaksonen, R., Laasko, M. and Takanen, A.,
Vulnerability Analysis of Software through Syntax
Testing, 2000.
http://www.ee.oulu.fi/research/ouspg/protos/analysi
s/WP2000-robustness/index.html, 2001.

Dubuisson, O., "ASN.1 Communication between
Heterogeneous Systems", Academic Press, San
Diego, 2001.

PKCS#7 - Cryptographic Message Syntax Standard.
http://www.rsasecurity.com/rsalabs/pkes/pkes-7/,
RSA Data Security, Inc, 2004.

Public-Key Infrastructure (X.509) (pkix).
http://www.ietf.org/html.charters/pkix-charter. html,
2004.

Turcotte, Y., Tal, O., Knight, S. and Dean, T.
“Universal methodology and tools for syntax-based
vulnerability testing of protocol implementations”.
Submitted to the Journal of Computer Security,
February 2004,

