
Abstract

Application protocols have become sophisticated
enough that they have become languages in their own
right. At the best of times, these protocols are difficult
to implement correctly. Combining the complexity of
these protocols with other development pressures such as
time to market, limited processor power and/or demand-
ing performance requirements make it even more difficult
to produce implementations without security vulner-
abilities. Traditional conformance testing of these imple-
mentations does not reveal many security vulnerabilities.
In this paper we describe ongoing research where soft-
ware transformation and program comprehension tech-
niques are used to to assist in the security testing of
network applications.

1. Introduction

The security of network applications is an increas-
ingly important topic in both academia and industry.
The cheap availability of bandwidth world wide has in-
creased the ability of people to communicate, but has
also provided convenient access to many systems for
those with malicious intent. This increased access to
bandwidth is not just access to the internet, but other
networks such as the cellular phone networks (both
voice and data). Additionally, implementations formerly
on closed network protocols are moving to public proto-
cols such as the move of telephone networks from
packet switched networks to Voice over IP protocols.

Some recent incidents include vulnerabilities in li-
braries used to display images (BMP[13] and JPG[9]), a
vulnerability in Cisco routers running OSPF[4], and a
proof of concept of the first virus for cellular phones[1].

Conformance testing of these applications tends to
focus on the correct implementation of the application to
valid requests and obvious errors. However, sometimes
the security vulnerabilities involve a data item that could
not possibly occur in the normal operation of a protocol.
As an example, an Xmas tree packet is a low level IP
packet that has every single flag in the header enabled.
Some of these flags are mutually exclusive. In the mid
1980’s, several implementations of TCP/IP operating
systems were unable to handle these packets, and this
became an effective Denial of Service (DOS) attack.

Our position is that evolution transformation tech-
niques can be fruitfully applied to structured data such as
network protocols. The protocols used by network appli-
cations have become languages in their own right with
both syntax and semantics. One approach to security
testing is Syntax Testing [2]. In this approach, syntax
and semantic errors are intentionally made to produce
variants of the data to attempt to expose vulnerabilities.

The PROTOS project[8] at Oulu University uses a
protocol grammar to generate variant packets. The gram-
mar specifies the possible packets right down to the val-
ues of fields. The grammar is modified manually to al-
low the desired errors and then a walker walks the gram-
mar tree, automatically generating the packets.

 While the general technique is the same, our ap-
proach is different. We capture a valid set of data by
sniffing the network and transforming it to generate al-
ternate packets. We also are automatically generating the
test plans based on the syntax and semantics of the pro-
tocol without manual intervention. This represents a
novel cross-fertilization between the software transfor-
mation and the security communities.

2. System Structure

Figure 1 shows the overall structure of our system.
At the bottom of the figure we have a network contain-
ing the test system and a client system that is interacting
with the test system. A sniffer is used to capture a valid
protocol data unit (PDU) that was sent from the client to
the test system. A PDU may be a single packet, or it
may be spread over multiple packets. The PDU at this
point in time is a binary data file. This file is decoded
into a textual representation by a decoder.

The markup and execution engine, implemented in
TXL[5], are used to generate variants of the packet which
are then re-encoded and injected into the network. The
original, valid packet is injected between each of the mu-
tated packets to verify that the test system is still func-
tional and responsive.

The markup and execution approach is modeled on
previous software evolution and transformation research
[6]. This approach separates the planning of the testing
suite from the execution of the testing suite. The
markup that is generated is rather simple. It includes
markup to delete a field, change the encoding of a field,

Applying Software Transformation Techniques to Security Testing

Thomas Dean Scott Knight
Electrical and Computer Engineering Electrical and Computer Engineering

Queen’s University Royal Military College of Canada
thomas.dean@ece.queensu.ca knight-s@rmc.ca

duplicate a field, change the value of a field, and other
similar tasks. The execution engine carries out most of
the markup (encoding markup is carried out by the
encoder). Thus markup is always done on the original
valid packet, may generate more than one packet, while
execution generates the modified packets. The markup
phase may generate more than one marked up packet,
each of which is independent. This separation of
concerns is important. Testing strategies that depend on
simultaneous changes to multiple fields communicate
through the markup. That is, they make markup to
simultaneous fields. The execution engine, responsible
for implementing the transforms, need not know about
relationships between fields.

The description of the protocol contains a variety of
information. It contains the syntax of the protocol,
transfer encoding information and semantic information
such as constraints between fields, ordering of sequences
and if the sequence must be unique. Most protocols are
described in a document which contains the syntax of the
protocol in a standard form such as EBNF or ASN.1[7].
The semantic constraints of the protocol tend to be
described in the prose of the document. Some means of
describing these constraints in addition to the syntax is
needed. We are interested in identifying the constraints
that exist both between fields of a given PDU (current
work) and between PDUs in a sequence (future work).

When investigating existing protocol description
languages, we discovered that almost all of them describe
the syntax of the protocol, some describe the transfer
syntax, and some describe the semantics of the protocol
either as finite state machines or as high level
algorithms. We are looking for constraints such as the
permissible values of a version field, the relationship
between a length field and the data item governed by the
length field, or that a sequence of items must be unique.

In state and algorithm based protocol languages,
extracting these relationships and constraints can be
difficult. Furthermore, many of the protocols we are
interested in are not currently described in these extended
languages. Requiring a test engineer to translate the
prose in a standard protocol description to a finite state
machine in order to extract simple constraints seemed to
be counter productive.

Figure 2 shows a description of our simple house
description protocol in our protocol description language
as a frame based protocol. Our protocol description
language is an XML based extension to the existing
ASN.1 standard. An XML markup is added to each non-
terminal in the description and provides information
about transfer encoding and constraints. In the Fig. 2,
the transfer encoding for the first non-terminal
(HDP_Packet) indicates that the number_of_houses field
is encoded as a 4 byte integer. The constraint markup
for the first non-terminal also indicates that the value of
the first field (number_of_houses) gives the cardinality
of the second field (houses). Other constraints include
value constraints (e.g. version is 0, 1 or 2, range is 0 to
255), length constraints (cardinality is number of items,
length is number of bytes). The third non-
terminal(House) has a single markup indicating the
transfer encoding for the house_number and family_name
fields.

This description is designed for a human test engineer
to read and write. Currently we are working on an
Eclipse plugin which will allow the test engineer to
author the ASN.1 directly and to enter the constraints
interactively, never having to deal with the XML
directly.

The information in this description is used in two
ways. The first is to generate protocol syntax and
transfer information for the decoder to decode the binary

Test
System

Client
System

Sniffer

PDU Decode

Text
PDU

Markup Execution

Injector

Text
PDUs

Encode

Protocol
Description

Test
Planning

Figure 1. Protocol Tester General Structure

PDU that was retrieved from the network. It is also
used by the encoder to re-encode the packet for injection.

The other way the protocol description is used is by
the test planner. A design recovery extractor is run over
the protocol description to generate an instance of an ER
model that contains the information in the protocol in an
form easily used by the test planner. Protocols usually
describe more than one PDU types (multiple request
PDU types, various response PDU types). The ER
instance contains the constraints for all of the PDU
types, which includes constraints not relevant to the
captured PDU. So the first task of the test planner is to
filter the information in the ER instance based on the
PDU to be mutated. The test planner then invokes
appropriate test plans for each of the remaining
constraints. These are invoked by using the markup
engine to markup the appropriate fields. The approach
currently in progress is table driven, with the first field
in the table identifying the constraint type identifying
one or more strategies which leads to a template
expression that marks up the fields involved in the
constraint. For example, the cardinality constraint given
in Figure 2 leads to several mutant PDUs where the
value of the number_of_houses field disagrees with the
number of House entities in the houses field.

3. Current Status

The base system for DER based protocols (e.g.
X.509[11,12] and SNMP[3]) was completed as part of
Yves Turcotte’s M.Sc. Thesis[15]. This comprises the
sniffer, the decoder, markup and execution engines, the
encoder and the injector. A scripting tool that drove the
markup and encoding engines was built that allowed a
user to indicate what errors should be applied to which
fields. A large variety of error strategies were designed
and implemented as part of this work. The work was
used to independently confirm errors in SNMP
implementations and to test an implementation of X.509
that was adopted by the Canadian Department of
National Defense. A new potential denial of service
attack was discovered in the implementation of the

X.509 protocol which increased the processing time of a
certificate from a fraction of a second to over two hours
of CPU time. As ASN.1/DER based protocols are self
describing, this system is completely protocol
independent. That is, the system has no knowledge of
the protocol syntax or semantics.

This infrastructure was extended by Dr. Oded Tal [14]
to handle frame based protocols (e.g. OSPF). This
involved adding a simple description of the protocol that
was used by the decoder and encoder to translate between
the binary and textual forms of the PDUs. But it also
involved investigation of the types of errors that apply
to frame based protocols. For example, some of the
syntax based mutations appropriate to DER based
protocols do not apply to frame based protocols.
Deleting a field from the middle packet simply shortens
the packet and the test system will interpret the
following field as the contents of the deleted field. Thus,
deleting a field is the same as generating random values
for subsequent fields. Similarly encoding errors are
limited. The possible DER vulnerability of valid over
length integer values is not reasonable in a protocol
which mandates a single length to fields.

However mutations based on values of fields and on
relationships between values of fields are effective. For
example, in OSPF there is a field within the packet
describing the length of some data fields in the packet. In
some implementations, this field is used, even if it says
that the data in the packet is longer than the length of
the packet itself. This leads to segmentation faults on
Unix systems and system failures in Windows 2000
Server. To the best of our knowledge, this is a new
vulnerability.

The protocol description language and the test
planner are currently in the process of being
implemented and integrated into the system.

4. Future Work

The system we have described is a very general
infrastructure with a great deal of potential. Some of the
future work we are planning on pursuing include:

HDP_Packet ::= SEQUENCE { Houses ::= SEQUENCE OF House
number_of_houses INTEGER House :: = SEQUENCE {
houses Houses house_number INTEGER

} family_name VisibleString
<size> }

number_of_houses is 4 bytes <size>
</size> house_number is 2 bytes
<constraints> family_name is 100 bytes
Cardinality(houses):=number_of_houses </size>
<constraints>

Figure 2. Protocol description of the House Description Protocol

State based protocols. The current protocols we have
investigated are state independent protocols. That is, the
protocols exist as request/response exchanges. Send a
request to a server get a response. Each request is, in
some sense, independent. Extending the framework to
deal with stateful protocols such as Voice over IP
protocols is an interesting avenue to pursue. This will
involve analyzing constraints between packets and
generating mutated packet sequences.

The protocols described are also currently binary
protocols. Textual protocols such as HTTP, SMTP and
SOAP (XML over HTTP) can also be security tested
using a transformation based process. The interesting
part of these protocols is that the decoder/encoder
becomes redundant, and transfer encoding is textual.

The current approach is also based on a black box
approach. On some occasions when we have had source
code to the test system, we have tracked down the bug in
the system manually. Expanding to a white box style of
testing has some potential. One option is to use the
erroneous PDU to isolate the error automatically. The
other option is to use a light weight program
comprehension/design recovery step to identify potential
security failures in the system. A full comprehension
approach can be expensive both in time and resources. A
light weight identification could be more aggressive in
identifying potential vulnerabilities which are used to
provide information to the test planner.

Alternatively, we can have the developers provide
some information to the test planner. The recent OSPF
bug exposed a dependency in some versions of CISCO
routers between certain requests and the value of the
hello timer in the router. While the implementation of
the hello timer is not part of the protocol, the existence
and the relationship between the hello timer and certain
PDUs is. So adding abstract implementation entities
and the relationship to the protocol description can help
test the implementations.

5. Conclusions

This paper has presented some of the ongoing
research into network security at the Royal Military
College of Canada and Queen’s University. This
research is the direct result of combining current research
approaches from two very diverse communities: the
software evolution and transformation community and
the software security community.

References

[1] BBC, ‘Game virus’ bits mobile phones, BBC
news, UK edition, Aug. 11, 2004.

[2] Bezier, B., Software Testing Techniques, 2nd
Edition, Van Nostraad Reinhold, New York, 1990.

[3] Case, J., Fedor, M., Schoffstall, M., Davin, J.,
Simple Network Management Protocol, Internet
RFC 1157, 1990.

[4] Cisco, Cisco Security Advisory: Cisco IOS
Malformed OSPF Packet Causes Reload,
Document ID: 61365, Cisco Systems, San Jose,
California, Aug. 2004.

[5] Cordy, J., The TXL Programming Language, v.
10, http://www.txl.ca/, 2000.

[6] Dean, T.R., Cordy, J.R., Schneider, K.A., Malton,
A.J., "Using Design Recovery Techniques to
Transform Legacy Systems", ICSM 2001 - The
International Conference on Software Maintenance,
Florence, Italy, November 2001, pp 622 - 631.

[7] Dubuisson, O., "ASN.1 Communication between
Heterogeneous Systems", Academic Press, San
Diego, 2001.

[8] Kaksonen, R., Laasko, M. and Takanen, A.,
Vulnerability Analysis of Software through Syntax
Testing,http://www.ee.oulu.fi/research/ouspg/proto
s/analysis/WP2000-robustness/index.html, 2001.

[9] Microsoft, Buffer Overrun in JPEG Processing
(GDI+) Could Allow Code Execution, Microsoft
Security Bulletin MS04-28, Sept. 2004.

[10] Moy, J., OSPF Version 2, Internet RFC 2328,
1998.

[11] PKCS#7-Cryptographic Message Syntax Standard.
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/,
RSA Data Security, Inc, 2004.

[12] Public-Key Infrastructure (X.509) (pkix).
h t t p : / / w w w . i e t f . o r g / h t m l . c h a r t e r s / p k i x -
charter.html, 2004.

[13] SecurityTracker.com, Microsoft Internet Explorer
Integer Overflow in Processing Bitmap Files Lets
Remote Users Execute Arbitrary code, Security
Tracker ID: 1009067, Feb 2004.

[14] Tal, O., Knight, S., Dean., T., Syntax-based
Vulnerability Testing of Frame-based Network
Protocols, Proceedings of the Second Annual
Conference on Privacy, Security and Trust,
Fredericton, Canada, October 2004, 6 pp., to
appear.

[15] Turcotte, Y., Syntax Testing of the Entrust Public
Key Infrastructure for security vulnerabilities in
the X.509 Certificate, M.Sc. Thesis, Department
of Electrical and Computer Engineering, Royal
Military College of Canada, 2003.

[16] Turcotte, Y., Oded, T., Knight, G.S., Dean, T.,
“Security Vulnerabilities Assessment Of the X.509
Protocol By Syntax–Based Testing”, Proceedings
of MILCOM 04, Monterey, California, October
2004, 7 pages, to appear.

